NANOLETTERS

Subscriber access provided by University of Newcastle, Australia

NEWCASTLE

Gate-tunable Giant Stark Effect in Few-layer Black Phosphorus

Yanpeng Liu, Zhizhan Qiu, Alexandra Carvalho, Yang Bao, Hai Xu, Sherman Jun Rong Tan, Wei Liu, Antonio H. Castro Neto, Kian Ping Loh, and Jiong Lu *Nano Lett.*, **Just Accepted Manuscript •** DOI: 10.1021/acs.nanolett.6b05381 • Publication Date (Web): 14 Feb 2017 Downloaded from http://pubs.acs.org on February 15, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Nano Letters is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Nano Letters

Z		
3 4	1	Gate-tunable Giant Stark Effect in Few-layer Black Phosphorus
5 6	2	
7	-	
8 9	3	Yanpeng Liu ^{1,2,} , Zhizhan Qiu ^{1,3,} , Alexandra Carvalho ^{2,4} , Yang Bao ^{1,2} , Hai Xu ^{1,2} , Sherman J. R.
10 11 12	4	Tan ^{1,3} , Wei Liu ^{1,2} , A. H. Castro Neto ^{2,4} , Kian Ping Loh ^{1,2,*} and Jiong Lu ^{1,2,*}
13	5	¹ Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore
14 15	6	117543
16 17	7	² Centre for Advanced 2D Materials and Graphene Research Centre, National University of
18 19	8	Singapore, Singapore 117546
20	9	³ NUS Graduate School for Integrative Sciences and Engineering, National University of
21	10	Singapore, 28 Medical Drive, Singapore 117456
23 24 25	11	⁴ Department of Physics, National University of Singapore, 3 Science Drive 2, Singapore 117542
26 27	12	*Email: chmlohkp@nus.edu.sg (K.P.L.); chmluj@nus.edu.sg (J.L.)
28 29 30	13	
31 32 33	14	Abstract:
34 35	15	Two-dimensional black phosphorus (BP) has sparked enormous research interest due to its
30 37 38	16	high carrier mobility, layer-dependent direct bandgap and outstanding in-plane anisotropic
39 40	17	properties. BP is one of the few two-dimensional materials where it is possible to tune the
41 42 43	18	bandgap over a wide energy range from the visible up to the infrared. In this article, we report
44 45	19	the observation of a giant Stark effect in electrostatically-gated few-layer BP. Using low
46 47 48	20	temperature scanning tunnelling microscopy, we observed that in few-layer BP, when electrons
49 50	21	are injected, a monotonic reduction of the bandgap occurs. The injected electrons compensate the
51 52	22	existing defect-induced holes and achieve up to 35.5% bandgap modulation in the light-doping
53 54 55	23	regime. The local density of states in few-layer BP, when probed by tunnelling spectroscopy,
56 57	24	shows characteristic resonance features arising from layer-dependent sub-band structures due to

quantum confinement effects. The demonstration of an electrical gate-controlled giant Stark
effect in BP paves the way to designing electro-optic modulators and photodetector devices that
can be operated in a wide electromagnetic spectral range.

Keywords: Black phosphorus, Giant Stark effect, bandgap, electrostatical-gating, scanning
 tunnelling microscopy

TEXT

The Stark effect is the shifting and splitting of atomic energy levels under the influence of an externally applied electric field. In semiconductors, in the presence of an electric field, the Stark effect will cause the energy levels to shift, which in turn modifies the bandgap. Hence, by changing the electric field, the electro-optical response of the material can be tuned.^{1,2} In quantum-confined systems, the Stark effect often gives a strong optical bandgap modulation due to inhibited exciton field ionization and reduced field screening as opposed to that in bulk materials.^{3,4} The quantum-confined Stark effect (OCSE) is the basis on which III-V semiconductor-based optical modulators operate.³ However, the relatively low energy offset between the quantized transitions and the surrounding cladding (such as GaAs, with a bandgap ~1.52 eV at 4K) means that even operational fields greater than only a few tens of kV cm⁻¹ can cause the tunnelling-out of the electrons to occur.⁴ Some two dimensional (2D) materials can potentially show a stronger Stark effect beyond those encountered in quantum-well structures due to its weaker dielectric screening, and its strongly anisotropic properties. However, it is difficult to induce a semiconductor-to-metal transition in bilayer transition metal dichalcogenides (TMDs) by tuning the externally applied electric field because of the relatively large bandgap

Nano Letters

(! 1eV) of these materials, the critical external electric field for such a transition being in the range 2-3 V/nm.⁵

Black phosphorus (BP), a layered allotropic form of elemental phosphorus, has attracted increased attention from researchers because of its layer-dependent bandgap spanning the entire electromagnetic spectrum, which is unmatched by any other 2D material known to date.⁶⁻¹² BP has both high mobility and a thickness-dependent direct bandgap (~2.0 eV for monolayer and ~0.3 eV for bulk sample owing to the strong interlayer coupling).¹²⁻¹⁴ In view of its orthorhombic crystal lattice with a puckered honeycomb structure, the conduction band minimum (CBM) and the valence band maximum (VBM) of BP are mainly contributed by localized P $3p_z$ orbitals (vertical to the puckered plane) rather than by $3p_x$ and $3p_y$, which means that the electronic properties of BP are very sensitive to electric field applied perpendicularly.¹⁵ The Stark effect coefficient is a parameter which reflects the rate of the reduction of band gap with applied field strength. The small bandgap (~0.3 eV in multilayer or bulk limit) and monotonically increasing Stark effect coefficient with layer number allows the semiconductor-to-metal transition of few-layer BP to be achieved at a relatively low critical field, for instance, the critical field $E_c \approx 0.68 \text{ V/nm}$ for 10 layers.^{15,16} In addition, according to nonlinear Thomas-Fermi theory, in view of the moderate screening effects of BP, BP flakes thinner than 10-nm will be strongly perturbed by an applied external electrical field.¹⁷ Recently, potassium dopant has been used to tune the electronic bandgap of bulk BP and the transition from a moderate-gap semiconductor to a band-inverted semimetal was induced by applying an ionization-induced vertical electric field.¹⁸ It has also been demonstrated that introducing surface transfer dopants such as caesium carbonate, molybdenum trioxide or depositing cross-linked poly(methyl methacrylate) on BP surface is capable of tuning the transport properties of BP.^{19,20}

However, the drawbacks of chemical doping include instability in air and increased probability of introducing charged scattering centres. In addition, it is difficult to achieve reversible doping using chemical dopants. In contrast, electrostatic doping, which is continuously tunable, non-destructive and carried out in ambient atmosphere, has been widely adopted to tune the optoelectronic properties of 2D materials and their heterostructures.²¹⁻³⁰ It has been predicted from theory that the electrical and optical properties of ultrathin BP can be effectively tuned by electrostatic doping.^{15,16,31,32} However, difficulties in the preparation of 2D BP device and its high reactivity when exposed to air have so far limited systematic experimental investigations.^{28-30,33-36}

Here, we report a LT-STM study on a few-layer BP device to demonstrate a giant Stark effect in few-layer BP flakes induced by electrostatic gating. We find that the application of an external perpendicular electric field across few-layer BP flakes leads to a monotonic narrowing of the bandgap with increasing field intensity. We achieve a notable bandgap reduction of ~35.5% (from 310 \pm 20 meV to 200 \pm 20 meV) by applying a vertical field of 0.1 V/nm. It is expected therefore, that few-layer BP can be transformed from moderate-gap semiconductor to a band-inverted semimetal under a more intense electric field. Furthermore, we observe resonance features in the dI/dV spectra, which originate from the thickness-dependent sub-band structures in few-layer BP. The gate tunable Stark effect of BP implies that it can be used as an electro-optical modulator operating in the far and mid-infrared regions.

To probe the effect of the applied electric field on the electronic properties of BP, we prepared a field effect transistor (FET) device consisting of a few-layer-layer BP flake stacked on a SiO₂ substrate with a doped Si back gate as shown in **Figure 1**a (see methods in SI for more details). Using the well-established dry transfer technique, a few-layer BP flake was placed on

Page 5 of 22

Nano Letters

the surface of a pre-patterned gold electrode deposited on a SiO₂/Si substrate.³⁷ The gold electrode served as the electrical contact required for STM measurements (Figure 1b). The crystallinity of the BP flake was characterized using Raman spectroscopy. Figure 1c shows the Raman spectrum with the three intrinsic peaks at \approx 362.9, 438.7, and 467.4 cm⁻¹, which are attributed to the Ag¹, B_{2g} and Ag² phonon modes respectively, in few-layer BP resulting from its orthorhombic crystal structure (shown in the upper panel of Figure 1b).^{7,11,38} To minimize surface degradation, BP devices were immediately loaded into the LT-STM chamber after device fabrication. The thickness of BP flakes probed in our STM study was determined to be equivalent to 11 layers using atomic force microscopy (AFM) (see supporting Figure S1).

Figure 2a shows a typical STM topographic image of a thin BP flake for a scan area of 50 $nm \times 50$ nm. It is seen that arrays of one-dimensional (1D) zigzag atomic rows corresponding to the upper rows of atoms in the puckered BP layer are clearly resolved, similar to the atomic STM images of *in-situ* cleaved bulk BP sample in previous reports.^{39,40} Our high resolution STM images reveal that an intact BP lattice is present in a majority of the flat surface regions. The defect-related feature showing a bright topographic contrast in STM imaging (Figure 2a), is presumably due to buried impurities or atomic substituents in the BP host lattice. These defects may contribute to hole doping in pristine BP crystals; this aspect is described in a later section.

According to the atomic structural model of BP (Figure 2b), each P atom is covalently bonded to three nearest neighbour atoms through 3*p* orbitals to form a puckered structure consisting of an upper row of P atoms (red and white balls) and a lower row of P atoms (violet balls). The wave function of the lower P atoms is expected to decay exponentially in the vertical direction and thus only the P atoms located on the top are clearly resolved in the STM topographic image as shown in the close up image (Figure 2c). The lattice constants measured

along two directions (armchair "xx" and zigzag "xy" shown in Figure 2b, top view) are determined to be 4.46 \pm 0.13 Å and 3.32 \pm 0.05 Å, respectively, which are in good agreement with previously reported values for bulk BP.^{12,13,39,40} Figure 2d shows a wide energy range dI/dVspectrum (which reflects the local density of states, LDOS) collected from areas on the BP surface far away from defective regions. The intrinsic spectrum is highly asymmetric and shows a wide "gap-like" signature surrounded by a series of well-defined resonant peaks labelled as V_n in the valence band and C_m in the conduction band. The origin of these prominent resonance features will be discussed later in the article. Due to the relatively large tip-sample separation, the dI/dV signal in the vicinity of the Fermi energy $(E_{\rm F}, V_{\rm S} = 0 \text{ V})$ is low and thus the prominent features in the spectrum occurs at high energy away from $E_{\rm F}$.^{21,39-41} To better resolve the electronic states close to E_F , a lower set point ($V_s = -1.0V$, I = 1.0 nA) has been used to collect the dI/dV spectrum from the same surface region as shown in Figure 2f. The bandgap of the as-prepared BP ($E_g = E_{CBM} - E_{VBM}$, see supporting Figure S2 for details of the calculation) is determined to be 310 ± 20 meV, consistent with previously reported behaviour and values for bulk BP.^{12,40} The slight fluctuation of E_g may be attributed to a tip-induced band bending effect, which has been carefully investigated in this work (see supporting information for details). Our STS data also reveal that the as-prepared BP flakes are heavily p-doped, which is confirmed from the closeness of the VBM energy and E_F (Figure 2f).

Next, we probe the evolution of the local electronic properties of BP as a function of the applied back gate voltage (V_g). In contrast to n-doping using K atoms, electrostatic gating enables us to tune the doping levels in thin BP flakes to obtain p-type or n-type behavior.¹⁸ **Figure 3**a shows the gate-voltage-dependent STS spectra acquired in the defect-free region of the 11-layer BP flake. At positive gate voltages ($V_g > 0$ V), negative charge carriers are injected

Page 7 of 22

Nano Letters

into the BP flake leading to n-type doping of BP. Hence, the band structure shifts towards the negative sample bias region [from the green line (0 V) up to the red line (+60 V)]. To our surprise, the shift of the band structure towards higher potential energy [(from the green line (0 V) down to the blue line (-60 V) is negligible. This observation is tentatively attributed to the heavily p-doped nature of the thin BP flakes ($E_{\rm F}$ is located at the edge of the VB and the presence of shallow acceptor states), which leads to Fermi level pinning. In order to determine the values of the VBM, CBM and bandgap more accurately, the logarithm of the dI/dV spectra collected at different gate voltages on thin BP flakes were plotted (shown in Figure 3b and 3c) (refer to supporting Figure S2 for more details). Using this method, we extracted the gate-dependent energies corresponding to CBMs, VBMs and the resonance peaks as shown in Figure 3d. It can be clearly observed that the CBMs and VBMs (pinned at the E_F) barely shift at $V_g \leq 0$ V, and consequently, the overall shift in the band structure of BP is negligible. In contrast, at $V_g \ge 0$ V, a pronounced downward shift of the entire band structure is observed. Interestingly, we also observed that the bandgap reduces significantly with increase in applied gate voltages at $V_g \ge 0$ V. In addition, the observed resonance peaks at different gate voltages move with the band edges depending on whether they are in the conduction band or the valence band region.

Here we employ Scanning Tunnelling Spectroscopy (STS) to measure field-dependent single-particle electronic bandgap of few-layer BP as opposed to two-particle optical bandgap *via* optical adsorption.⁴¹ Hence, the reduction in the bandgap of 11-layer BP flakes as a function of gate voltages can be explained on the basis of a giant Stark effect rather than Franz-Keldysh effect reported in the recent work on optoelectronic modulation of BP.^{28,29,42} In the absence of a giant Stark effect, a rigid band shift typically occurs with gate voltage and E_g remains unchanged even when electric field is applied (**Figure 4**a, left. $E_g = E'_g = \text{constant}$).^{24,43} In the presence of

the Stark effect, the band edges of VB and CB gradually move towards each other with increasing gate voltage due to the spatial redistribution of their wave functions in the puckered layer structure, as shown in Figure 4a (right). To understand the asymmetry in gap reduction observed in Figure 3a and 3d, we provide a schematic to explain the experimental results at different gate bias. Initially ($V_g = 0$ V, left panel of Figure 3e), the few-layer BP sample is p-doped (VBM of BP flake nearly touches the Fermi energy, Figure 2f and green line in Figure 3b) and therefore, free positive charge carriers distribute uniformly in the real space of few-layer BP. When a negative gate voltage is applied ($V_g < 0V$, electrons accumulate in the p++ silicon layer and thus holes will be induced in the BP layers), additional holes fill the valence states. As a result of the accumulation of holes, screening of the gate electric field occurs (right panel in Figure 3e) and the measured bandgap of BP remains approximately constant (Figure 3b). On the other hand, a positive gate voltage injects electrons into the BP flake. A depletion layer is formed with different heights depending on the field strength (left panel, Figure 3f), which facilitates the penetration of the electric field into the whole BP flake (right panel, Figure 3e). During this process, two effects can occur: i) a potential drop that shifts the CB and the VB towards lower energy and ii) a gap reduction due to the Stark effect as shown in Figure 3c (V_g = 0V, 20V and 30V). With increasing voltage (E_F locates right in the middle of bandgap, here, $V = 29 \pm 1$ V), the holes become completely depleted by back-gating. At even higher positive gate voltages, the BP flake becomes electron doped, (as shown in Figure 3f, right panel) and both the VB and the CB move towards the negative sample bias region with the latter approaching the Fermi level. Once the CB touches the Fermi level, the "pinning" effect dominates and the gap reduction is arrested. For the latter two cases shown in Figure 3f (Vg > 0 V), the bandgap of few-layer BP is reduced to 200 \pm 20 meV even at a moderate gate voltage ($V_g = 60$ V), due to the giant Stark

Page 9 of 22

Nano Letters

effect.^{1,2,16} The magnitude of bandgap modulation achievable by the Stark effect is predicted to be larger in thinner BP flakes due to its larger bandgap as compared to thicker BP, where electro-optical modulation from the visible to far infrared regime can be achieved in monolayer and bilayer BP.^{7,15,16} Our theoretical calculations reveal that the Stark coefficient defined as S_{nL} = $-(dE_g/dE_{ext})/e$ increases monotonically as a function of layer thickness (see supporting Figure that a large critical field strength is S3). suggesting required to induce the semiconductor-to-semimetal phase transition for thinner samples.

In order to estimate the magnitude of reduction of E_{g} by Stark effect and to identify the origin of the resonance peaks in the dI/dV spectra, we calculate the electronic structure of few-layer BP under different external electrical fields, using density functional theory (DFT) calculations within the Perdew-Burke-Ernzerhof parametrisation (PBE).^{12,16} Figure 4b shows the highest occupied states at the Γ point for a 11-layer BP sample without (top) and with (bottom) 0.1 V/nm electrical field, where a strong redistribution of the VBM states along the z direction is observed in the latter. Even though the value of the estimated bandgap is slightly underestimated using the PBE approximation, modifications of the band structure due to small perturbations can be correctly predicted. For low fields, it is found that the bandgap varies quadratically with the electric field as expected from the system symmetry. Since phosphorene is centrosymmetric and has no dipole in the direction of the field, the first order term in the expression for the energy levels ε_i in *E* vanishes, and the leading terms are (as found by perturbation theory) given by :

203
$$\varepsilon_i = \varepsilon_i^0 + \sum_{k \neq i} \frac{M_{ik}^2}{\varepsilon_i - \varepsilon_k} E^2$$
(1)

where M_{ik}^{zz} is the dipole matrix element between states *i* and *k*.

This is qualitatively similar to the experimentally observed behaviour (Figure 4c). If the intensity of the electric field is calculated from the experimental values for V_g assuming that the system can be approximated by two planar capacitors in series (see supporting Figure S4 for more details), the experimentally obtained rate dE_q/dE is of the same order of magnitude as expected from the theoretical prediction (inset in Figure 4c), despite despite the bandgap underestimation, the uncertainty in the estimation of the capacitance, and tip-induced band bending effects which may contribute to decrease the measured dE_a/dE .^{24,44,45} In fact, a large magnitude of bandgap reduction should be achievable by applying a high electric field. By performing transport studies on a dual-gated BP transistor, Deng et al. reported that the band gap can be narrowed to ~50 meV under a high electric field strength of 1.1 V/nm by measuring the minimum transport conductivity and carrier density at different temperatures.³⁰

In the STS spectra (Figure 2d and 2f) of the 11-layer BP flake, in addition to the gap feature, resonance peaks are observed. The tendency of these peaks to move in the same direction as the band edges as a function of the gate voltage indicates that they originate from electronic states and are not due to tip-induced charging effects (see supporting Figure S5).^{22,41} The energy separation between the adjacent resonances observed here is larger than 150 meV, which is much higher than the energy of the most energetic phonon mode of BP (~66.1 meV).³⁸ The nearly-rigid shifting of the resonance peaks together with the band edges also rules out possible contribution from electron-plasmon coupling (see supporting information for more details on other possible origins of these peaks).⁴⁶⁻⁴⁸ Instead, a sub-band model due to the quantisation of BP layers with finite thickness can be used to explain the thickness-dependent resonance features in the STS spectra, which is verified both by our DFT calculations with PBE and through a phenomenological tight-binding model.^{14,49} LDOS obtained from DFT calculations are in good

agreement with the STS spectra recorded on BP with different layer numbers (see supporting Figure S6). Due to the strong interlayer interaction, both the CBs and VBs of N-layer phosphorene are quantized and split into N 2D sub-bands. This quantum-well like structure creates the characteristic sub-band structures of few-layer BP, which in turn modifies its density of states. In the absence of other interactions and thermal effects, this DOS modulation may manifest as singularities in a system with a parabolic band dispersion. The spacing between the peaks can be approximated by a simple one dimensional tight-binding band model

235
$$E_{N,n} = E_{N,n}^0 + 2\gamma \cos(\frac{n\pi}{N+n})$$
 (2)

where n = 1, 2..., N, is the subband index, $E_{N,n}^0$ is the average band energy, and $\gamma = 0.55$ (HSE), 0.49 (PBE). Based on this simplified tight-binding model, an integrated evolution of the sub-band structures of few-layer BP is empirically described (Figure 4d). This model describes the band energy at the Γ point of the 2D Brillouin zone considering only the nearest-neighbour layer-layer interaction while neglecting electron-electron and electron-hole (exciton effect) interactions, in accordance with our experimental conditions.

To further elucidate the nature of the resonance peaks in STS, we compare the experimental dI/dV spectra with the DOS obtained from DFT calculations for few-layer BP ranging from 1–12 layers (Figure 4e, see supporting Figure S7 for a full version). The large hole effective mass along the $\Gamma - Y$ direction leads to additional contributions in DOS, which gives rise to the observed peaks in STS (shown in Figure 2f). Moreover, the sharp peaks which are seen appearing in the -1.5 to -2 eV energy range (V'_n , Figure 2d) originate from deep-lying flat sub-bands. Our calculations confirm the presence of sub-bands with energy spacing similar to the experimentally observed resonance peaks. One remarkable feature is the possibility for optical

transitions between quantized sub-bands in the same band, leading to multiphoton absorptions.
The unique sub-band structure also suggests that BP may qualify as an emerging candidate
material for quantum cascade lasers.⁵⁰

The giant Stark effect in few-layer BP device allows the bandgap of BP to be electrically tuned. For 11-layer-thick BP, the bandgap can be reduced from 310 ± 20 meV to 200 ± 20 meV. Interestingly, layer-dependent sub-band structures (especially the sub-bands at Γ point) have been experimentally observed in our STS measurements, where we found that the number of sub-bands is directly correlated to the number of layers in BP. This suggests that STS can be used as a tool to accurately determine the layer number in few-layer BP. The reduced bandgap of few-player BP due to the giant Stark effect shifts its working spectral range to far-IR while the sub-band transition induces multiphoton absorptions.⁵⁰⁻⁵² Moreover, the giant Stark effect breaks the symmetric BP quantum well-like electronic structure, leading to the relaxation of selection rules and consequently activates "forbidden" optical transitions from the valence sub-band to the conduction sub-band with different quantum numbers.⁵² Our work suggests that the inter-band and inter sub-band transitions in BP can be continuously varied over a wide electromagnetic spectral range from visible to far IR by varying the electric field, making BP a versatile material platform for applications in IR optical modulators and quantum cascade lasers.

268 ASSOCIATED CONTENT

The Supporting Information is available free of charge on the ACS Publications website.
Details of the experiment method, thickness determination, bandgap calculation method,
layer-dependent properties of BP, exclusion of possible origin of resonance peaks, calculated
band structure of 1-12 layer BP.

1		
2 3 4	273	AUTHOR INFORMATION
5 6 7	274	Corresponding Authors:
8 9	275	*K. P. L. (E-mail: chmlohkp@nus.edu.sg)
10 11 12	276	*J. L. (E-mail: chmluj@nus.edu.sg)
13 14 15 16	277	ORCID
17 18	278	Yanpeng LIU: 0000-0002-5265-2735
19 20 21	279	Sherman J. R. Tan: 0000-0003-1591-3497
22 23	280	Kian Ping Loh: 0000-0002-1491-743X
24 25 26	281	Jiong Lu: 0000-0002-3690-8235
27 28 20	282	Author contributions
29 30 31 32	283	^v These authors contribute equally to this work.
33 34 35	284	Notes
36 37 38	285	The authors declare no competing financial interests.
39 40 41	286	ACKNOWLEDGMENTS
42 43	287	The authors acknowledge the National Research Foundation, Prime Minister Office, Singapore,
44 45 46	288	under its Medium Sized Centre Programme and CRP award "Novel 2D materials with tailored
47 48 40	289	properties: Beyond graphene" (R-144-000-295-281). The first-principles calculations were
49 50 51	290	carried out on the Centre for Advanced 2D Materials computing facilities. J. Lu acknowledges
52 53 54	291	the support from NUS start-up grant (R-143-000-621-133) and Tier 1 (R-143-000-637-112).
55 56	292	
57 58 59 60	293	13

REFERENCES

- 295 1. Park, C.-H.; Louie, S. G. Nano Lett. 2008, 8, 2200-2203.
- 296 2. Khoo, K. H.; Louie, S. G. Phys. Rev. B, 2004, 69, 201401.
- 297 3. Kuo, Y.; Lee, Y. K.; Ge, Y.; Ren, S.; Roth, J. E.; Kamins, T. I.; Miller, D. A. B.; Harris, J. S.
 298 *Nature*, 2005, 437, 1334-1336.
- 299 4. Fröhlich, D.; Wille, R.; Schlapp, W.; Weimann, G. Phys. Rev. Lett. 1987, 59, 1748.
- 300 5. Ramasubramaniam, A.; Naveh, D.; Towe, E. *Phys. Rev. B*, 2011, *84*, 205325.
- 301 6. Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y. Nat.
 9 302 Nanotech., 2014, 9, 372-377.
- 303 7. Ling, X.; Wang, H.; Huang, S.; Xia, F.; Dresselhaus, M. S. *Proc. Natl Acad. Sci. USA*. 2015, 112, 4523-4530.
- ⁴ 305 8. Churchill, H. O.; Jarillo-Herrero, P. *Nat. Nanotech.* **2014**, *9*, 330–331.
- ²⁶ 306 9. Liu, H.; Du, Y.; Deng, Y.; Peide, D. Y. Chem. Soci. Rev. **2015**, 44, 2732-2743.
- 8 307 10. Reich, E. S. *Nature*. 2014, 506, 19.
- 308 11. Castellanos-Gomez, A. J. Phys. Chem. Lett. 2015, 6, 4280-4291.
- ¹2 309 12. Qiao, J.; Kong, X.; Hu, Z. X.; Yang, F.; Ji, W. *Nat. Commun.* **2014**, *5*.
- 33 310 13. Low, T.; Rodin, A. S.; Carvalho, A.; Jiang, Y.; Wang, H.; Xia, F.; Neto, A. C. *Phys. Rev. B*.
 35 311 2014, 90, 075434.
- 312 14. Li, L.; Kim, J.; Jin, C.; Ye, G.; Qiu, D. Y.; da Jornada, F. H.; Shi, Z.; Chen, L.; Zhang, Z.;
 313 Yang, F.; Watanabe, K.; *Nat. Nanotech.* 2016.12,21-25.
- ⁴⁰ 314 15. Li, Y.; Yang, S.; Li, J. J. Phys. Chem. C, **2014**, 118, 23970-23976.
- ⁴² 315 16. Dolui, K.; Quek, S. Y. *Sci. Rep.* **2015**, *5*. 11699.
- 44 316 17. Low, T.; Roldán, R.; Wang, H.; Xia, F.; Avouris, P.; Moreno, LM.; Guinea, F. *Phys. Rev.*45 46 317 *Lett.* 2014, *113*, 106802.
- 318 18. Kim, J.; Baik, S.S.; Ryu, S.H.; Sohn, Y.; Park, S.; Park, B.G.; Denlinger, J.; Yi, Y.; Choi,
 319 H.J.; Kim, K.S. *Science*. 2015, *349*, 723-726.
- 51 320 19. Wang, G.; Bao, L.; Pei, T.; Ma, R.; Zhang, Y. Y.; Sun, L.; Zhang, G.; Yang, H.; Li, J.; Gu,
 52 53 321 C.; Du, S.; *Nano Lett.* 2016, *16*, 6870.
- ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁰
 ⁵⁷
 ⁵⁰
 ⁵⁰
 ⁵¹
 ⁵²
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁶</l

Page 15 of 22

Nano Letters

1 2			
3 4	324	21.	Zhang, Y.; Brar, V.W.; Wang, F.; Girit, C.; Yayon, Y.; Panlasigui, M.; Zettl, A.; Crommie,
5 6	325		M.F. Nat. Phys. 2008, 4, 627-630.
7	326	22.	Zhang, Y.; Tang, T.T.; Girit, C.; Hao, Z.; Martin, M.C.; Zettl, A.; Crommie, M.F.; Shen,
8 9	327		Y.R.; Wang, F. Nature. 2009, 459, 820-823.
10 11	328	23.	Khodkov, T.; Khrapach, I.; Craciun, M. F.; Russo, S. Nano Lett. 2015, 15, 4429-4433.
12 13	329	24.	Lu, C. P.; Li, G.; Mao, J.; Wang, L. M.; Andrei, E. Y. Nano Lett. 2014, 14, 4628-4633.
14 15	330	25.	Chu, T.; Ilatikhameneh, H.; Klimeck, G.; Rahman, R.; Chen, Z. Nano Lett. 2015, 15,
16	331		8000-8007.
17 18	332	26.	Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.;
19 20	333		Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B.J. Nat. Mater. 2011, 10, 282-285.
21 22	334	27.	Yankowitz, M.; Xue, J.; Cormode, D.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi,
23	335		T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B.J. Nat. Phys. 2012, 8, 382-386.
24 25	336	28.	Lin, C.; Grassi, R.; Low, T.; Helmy, A.S. Nano Lett. 2016, 16, 1683-1689.
26 27	337	29.	Whitney, W.S.; Sherrott, M.C.; Jariwala, D.; Lin, W.H.; Bechtel, H.A.; Rossman, G.R.;
28 29	338		Atwater, H.A. Nano Lett., 2017, 17, 78-84.
30 31	339	30.	Deng, B.; Tran, V.; Jiang, H.; Li, C.; Xie, Y.; Guo, Q.; Wang, X.; Tian, H.; Wang, H.; Cha,
32	340		J.J.; Xia, Q. arXiv preprint arXiv:1612.04475. 2016, 1612.
33 34	341	31.	Yuan, S.; van Veen, E.; Katsnelson, M.I.; Roldán, R. Phys. Rev. B. 2016, 93, 245433.
35 36	342	32.	Liu, Q.; Zhang, X.; Abdalla, L. B.; Fazzio, A.; Zunger, A. Nano Lett. 2015, 15, 1222-1228.
37 38	343	33.	Wood, J.D.; Wells, S.A.; Jariwala, D.; Chen, K.S.; Cho, E.; Sangwan, V.K.; Liu, X.; Lauhon,
39 40	344		L.J.; Marks, T.J.; Hersam, M.C. Nano Lett. 2014, 14, 6964-6970.
40	345	34.	Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Archarya, K. L.;
42 43	346		Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V.; Zandbergen, H.
44 45	347		W.; Palacios, J. J.; van der Zant, H. S. J. 2D Mater. 2014, 1, 025001.
46 47	348	35.	Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L'Heureux, A.L.; Tang, N.Y.; Lévesque, P.L.;
48	349		Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Nat. Mater. 2015, 14, 826-832.
49 50	350	36.	Kim, JS.; Liu, Y.; Zhu, W.; Kim, S.; Wu, D.; Tao, L.; Dodabalapur, A.; Lai, K.;
51 52	351		Akinwande, D. Sci. Rep. 2015, 5, 8989.
53 54	352	37.	Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant,
55 56	353		H.S.; Steele, G.A. 2D Mater. 2014, 1, 011002.
50 57	354	38.	Aierken, Y.; Çakır, D.; Sevik, C.; Peeters, F. M. Phys. Rev. B. 2015, 92, 081408.
58 59			15
60			
			ACS Paragon Plus Environment

2			
3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 10 11 23 14 5 6 7 8 9 20 11 12 23 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 24	355	39.	Liang, L.; Wang, J.; Lin, W.; Sumpter, B. G.; Meunier, V.; Pan, M. Nano Lett. 2014, 14,
	356		6400-6406.
	357	40.	Zhang, C.D.; Lian, J.C.; Yi, W.; Jiang, Y.H.; Liu, L.W.; Hu, H.; Xiao, W.D.; Du, S.X.; Sun,
	358		L.L.; Gao, H.J. J. Phys. Chem. C. 2009, 113, 18823-18826.
	359	41.	Ugeda, M.M.; Bradley, A.J.; Shi, S.F.; Felipe, H.; Zhang, Y.; Qiu, D.Y.; Ruan, W.; Mo, S.K.;
	360		Hussain, Z.; Shen, Z.X.; Wang, F.; Nat. Mater., 2014, 13, 1091-1095.
	361	42.	Miller, D.A.B.; Chemla, D.S.; Schmitt-Rink, S. Phys. Rev. B, 1986, 33, 6976.
	362	43.	Klein, J.; Wierzbowski, J.; Regler, A.; Becker, J.; Heimbach, F.; Müller, K.; Kaniber, M.;
	363		Finley, J.J. Nano Lett. 2016, 16, 1554-1559.
	364	44.	Brar, V.W.; Decker, R.; Solowan, H.M.; Wang, Y.; Maserati, L.; Chan, K.T.; Lee, H.; Girit,
	365		Ç.O.; Zettl, A.; Louie, S.G.; Cohen, M.L.; Nat. Phys. 2011, 7, 43-47.
	366	45.	Luryi, S. Appl. Phys. Lett. 1988, 52, 501-503.
24 25	367	46.	Bostwick, A.; Ohta, T.; Seyller, T.; Horn, K.; Rotenberg, E. Nat. Phys. 2007, 3, 36-40.
26 27	368	47.	Brar, V.W.; Wickenburg, S.; Panlasigui, M.; Park, C.H.; Wehling, T.O.; Zhang, Y.; Decker,
28 29	369		R.; Girit, Ç.; Balatsky, A.V.; Louie, S.G.; Zettl, A.; Phys. Rev. Lett. 2010, 104, 036805.
30 31 32	370	48.	Girard, J. C.; Lemaître, A.; Miard, A.; David, C.; Wang, Z. Z. J. Vac. Sci. Technol. B. 2009,
	371		27, 891-894.
33 34	372	49.	Zhang, G.; Chaves, A.; Huang, S.; Song, C.; Low, T.; Yan, H. arXiv preprint
35 36	373		arXiv:1607.08049. 2016, 1607.
37 38	374	50.	Sirtori, C.; Faist, J.; Capasso, F.; Cho, A. Y. Pure. Appl. Opt.: J. Euro. Opti. Soc. Part A.
38 39 40 41 42 43	375		1998 , 7, 373.
	376	51.	Rogalski, A. Infrared phys. & technol. 2007, 50, 240-252.
	377	52.	Sun, Z.; Martinez, A.; Wang, F. Nat. Photon., 2016, 10, 227-238.
44 45	378		
46 47			
48			
49 50			
51 52			
53 54			
55			
57 57			
58 59			16
60			

35 381

Figure 1. Schematic drawing and structural characterisation of a few-layer BP device. (a) Schematic illustration of a gated BP device during STM analysis. The sample bias V_s is applied between the STM tip and the thin BP sample contacted by a gold electrode. The electrostatic gate voltage is applied to the BP flake through a p-doped silicon wafer. (b) Optical image of few-layer BP flakes on silicon substrate partially in contact with a gold electrode. Scale bar is 20 µm. (c) Raman spectrum of the as-prepared BP flake; the peak at ~520 cm⁻¹ originates from the underlying silicon substrate.

Figure 2. STM imaging and electronic characterisation of a few-player BP device. (a) Large-area STM imaging of the bare BP flake ($V_{\rm S}$ = -0.3V, I= 0.6nA). Scale bar is 10 nm. (b) Sketches showing the side and top view of monolayer BP. Scale bar is 10 nm. (c) High-resolution STM image of BP ($V_{\rm S}$ = -0.35 V, I = 0.8 nA). Scale bar is 1.5 nm. (d) A wide energy range dI/dV spectrum acquired on few-layer BP showing the electronic resonance features V'_n in the valence band and C_m in the conduction band. E_F represents Fermi energy (set point: $V_{\rm S}$ = -2.0 V, I= 2.5 nA). (e) PBE band structure calculation of 11-layer BP. (f) a narrow energy range dI/dV spectrum taken on the same spot (as that in d) revealing the valence band maximum, the conduction band minimum and a few resonance peaks (V_n in VB region and $C_{\rm m}$ in CB region). CB region (red line) is rescaled by a factor of 0.15 for visual contrast.

403 Figure 3. Gate-controlled Stark effect in an 11-layer BP flake device. (a) Gate-dependent dI/dV spectra 404 obtained on a defect free region in an 11-layer BP flake. (Set point: $V_S = -1.0 \text{ V}$, I = 1.0 nA). The curves 405 are vertically offset and the gate voltage step is 10 V. (b) and (c) Logarithmic dI/dV spectra under 406 negative and positive gate voltages, respectively. (d) VBM (red balls), CBM (black balls), resonance 407 peaks (solid symbols) and bandgap (E_g) of 11-layer BP at different gate voltages. (e) and (f) Schematic 408 models (note: thickness and charge carrier density not to scale) to illustrate the charge carrier distribution 409 and gate-dependent behaviour of 11-layer BP shown in Figure 3b and 3c, respectively.

415 while the dashed red and black lines represent the VBM and CBM under an electric field ($E \neq 0$ V),

416 respectively. (b) The wave function modulus square of the highest occupied state at Γ point for 11-layer
417 BP sample at 0 V/nm (top) and 0.1 V/nm (middle) electrical fields. The wave function modulus square of

418 the lowest unoccupied state at Γ point for the 11-layer BP sample at 0.1 V/nm electrical field (bottom). (c)

ACS Paragon Plus Environment

Page 21 of 22

1

Nano Letters

2		
3 4	419	Measured bandgap of 11-layer BP as a function of applied electrical field. Inset shows the calculated
5	420	bandgap of a BP sample of the same thickness in the presence of electrical fields of different strength. (d)
6 7	421	Level spacing in few-layer BP (layer number N= 2–12) obtained from PBE (red) and HSE (blue)
8	422	calculation methods. (e) Representative layer-dependent PBE band structures of BP; please refer to the
9 10	423	supporting information Figure S7 for a more detailed version of the calculation.
11 12		
13	424	
14 15		
16		
18		
19 20		
21		
22 23		
24		
25 26		
27 28		
29		
30 31		
32		
33 34		
35 36		
37		
38 39		
40		
41 42		
43 44		
45		
46 47		
48		
49 50		
51 52		
53		
54 55		
56		
57 58		21
59 60		21
00		ACS Paragon Plus Environment

0.3

0.2

