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A continuum constraint-free phase field model
is proposed to simulate the magnetic domain
evolution in ferromagnetic materials. The model takes
the polar and azimuthal angles (ϑ1, ϑ2), instead of
the magnetization unit vector m(m1, m2, m3), as the
order parameters. In this way, the constraint on the
magnetization magnitude can be exactly satisfied
automatically, and no special numerical treatment
on the phase field evolution is needed. The phase
field model is developed from a thermodynamic
framework which involves a configurational
force system for ϑ1 and ϑ2. A combination of the
configurational force balance and the second law
of thermodynamics leads to thermodynamically
consistent constitutive relations and a generalized
evolution equation for the order parameters (ϑ1, ϑ2).
Beneficial from the constraint-free model, the
three-dimensional finite-element implementation
is straightforward, and the degrees of freedom are
reduced by one. The model is shown to be capable
of reproducing the damping-dependent switching
dynamics, and the formation and evolution of
domains and vortices in ferromagnetic materials
under the external magnetic or mechanical loading.
Particularly, the calculated out-of-plane component
of magnetization in a vortex is verified by the
corresponding experimental results, as well as the
motion of the vortex under a magnetic field.

1. Introduction
Owing to their ferromagnetic property and magnetic-
mechanical coupling, ferromagnetic materials are widely

2014 The Author(s) Published by the Royal Society. All rights reserved.

 on September 11, 2014rspa.royalsocietypublishing.orgDownloaded from 

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2014.0517&domain=pdf&date_stamp=2014-09-10
mailto:yi@mfm.tu-darmstadt.de
http://rspa.royalsocietypublishing.org/


2

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20140517

...................................................

used in industrial applications, such as magnetic data storage, sensors and actuators, transducers
and microelectromechanical systems [1–3]. The viable applications and reasonable design
of the devices based on ferromagnetic materials are highly dependent on the fundamental
understanding of the microstructures of these materials. At the microscale, ferromagnetic
materials are composed of discretized magnetized regions in which the magnetization is uniform.
These regions are generally called magnetic domains [4,5]. Accordingly, at the macroscale,
the macroscopic magnetic-mechanical properties are determined by these magnetic domain
evolutions which can be driven by the external magnetic field and/or mechanical loading [4–6].
Hence, developing a model for ferromagnetic materials that can describe or predict the structure
and evolution of the magnetic domains is critically important for understanding, designing and
engineering the macroscopic properties of the ferromagnetic devices.

Presently, the micromagnetic model and the phase field method are two widely used
approaches for modelling ferromagnetic materials. Based on the well known domain wall
calculation by Landau and Lifshitz in 1935 [7], in the 1960s Brown laid the foundation of
the micromagnetics theory [8]. The micromagnetic model uses the celebrated Landau–Lifshitz–
Gilbert (LLG) equation [9] to describe the temporal evolution of the magnetization and of the
domain structure. In the last two decades, the micromagnetic model has achieved vital success in
modelling ferromagnetic materials [10–13]. However, in this model, it is difficult to consider the
mechanical effects, especially the inhomogeneous stress resulting from the elastic incompatibility
of the magnetostrictive strain [14,15]. By contrast, the conventional phase field model is based
on the continuum thermodynamics and the kinematics of the materials. This type of model
usually uses the magnetization as the order parameters [14–19]. It can easily take into account
the magnetic-mechanical coupling and predict the detailed domain structure and evolution
under external magnetic field or mechanical loading without a priori assumption on domain
morphologies.

As in most of the work about micromagnetic models and phase field models for ferromagnetic
materials, we consider here merely the evolution at a constant temperature which is far below the
Curie temperature and the phase transition temperature. Thereby, the magnetization magnitude
remains constant and only its direction changes during the domain evolution. This constraint can
be given as

M = Mm with ‖m‖ = 1, (1.1)

where M is the magnetization vector introduced as a continuum field variable, M is the saturation
magnetization magnitude and m is the magnetization unit vector. M is constant when the
temperature dependence is ignored. This is intrinsically different from the ferroelectric phase
field models with polarization as the order parameter, in which no constraint on the polarization
magnitude is enforced [20,21]. In the ferromagnetic materials, the magnetocrystalline anisotropy
energy term is non-convex, whose function is similar to that of the Landau energy polynomial in
ferroelectrics [20,21]. But it works only when the magnitude constraint of ‖M‖ = M is applied.
In other words, only when the constraint ‖m‖ = 1 is considered, this non-convex term can
form a multi-well landscape which characterizes the easy axes of the magnetization. This
constraint makes the determination of the phase field evolution path challenging and introduces
complications in the phase field modelling and numerical implementation [22–25].

In conventional ferromagnetic phase field models, the LLG equation is usually taken as the
evolution equation. There the magnitude constraint of ‖M‖ = M does not explicitly appear in
the formulation but is enforced in the numerical implementation [14,17,19]. This results in a
rather simplified presentation. But the numerical implementation of the LLG equation with the
constraint is particularly challenging. In the literature, there exist some approximation techniques,
such as projection [26], renormalization [14,22], special test function [24] and Lagrange multiplier
[23]. There are also exact techniques in use of rotation in the Lie group [25,27]. Recently, Landis
introduced a constraint energy term in the form of As(‖M‖ − M)2, in order to handle the constraint
in an energetic formulation [18]. However, in this way, the constraint is only fulfilled at the
stationary solution, and the evolution dynamics is not physically sound. Furthermore, it is not
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so easy to choose a reasonable value for the constraint energy coefficient As. Wang & Zhang [15]
have used this constraint energy proposed by Landis and the time-dependent Ginzburg–Landau
(TDGL) equation which is widely used in ferroelectrics to establish their phase field model. It
should be noted that if the LLG equation instead of the TDGL equation is used, the contribution
of the constraint energy to the LLG equation vanishes; because the equality m × m = 0 always
holds in the LLG equation. Therefore, the method of constraint energy is not so effective.

In this work, we develop a novel constraint-free phase field model for mechanically coupled
magnetic domain evolution in ferromagnetic materials. The focus here is to construct a model
which delivers the correct evolution dynamics and fulfils the constraint automatically. The idea
is to take the polar and azimuthal angles (ϑ1, ϑ2), instead of the magnetization unit vector
m(m1, m2, m3), as the order parameters. It is apparent that the Cartesian components of m can be
expressed by (ϑ1, ϑ2) in a constraint-free formulation, i.e. m1 = sin ϑ1 cos ϑ2, m2 = sin ϑ1 sin ϑ2 and
m3 = cos ϑ1. By using the configurational force theory and the second law of thermodynamics, a
set of thermodynamically consistent constitutive relations and a generalized evolution equation
for ϑ1 and ϑ2 are derived, as shown in §2. In §3, a three-dimensional nonlinear finite-element
formulation of this constraint-free model is presented. Thereby no additional numerical technique
is required for the magnitude constraint of ‖m‖ = 1. Furthermore, the node degrees of freedom
are decreased by one. In §4, several numerical examples are presented. Benchmark test on
precession and precessional switching is checked in the use of one-element simulation, and
it demonstrates that the model reproduces the correct magnetization dynamics. Modelling on
domain formation and evolution, such as vortices and 180◦ domain switching, shows that three-
dimensional simulations are required in order to recapitulate the spatial switching path. The
shape and motion of the computed vortices agree well with the related experimental results.
In addition, the ferroelastic switching is also simulated. In comparison with other phase field
simulations, the proposed three-dimensional constraint-free model has the merit that it can
readily reveal the damping-dependent and the out-of-plane of magnetization in a thin film.

2. Continuum constraint-free phase field model

(a) Field equations
The magnetoelastic coupling is one of the most important properties for ferromagnetic materials.
Thus both the mechanics and the magnetostatics should be considered in the modelling.
For a ferromagnetic body B with a boundary ∂B, the quasi-static mechanical equilibrium is
described by

σij,j + fi = 0 in B, (2.1)

where σij is the Cauchy stress and fi is the body force. Hereafter, the Latin indices (i, j, k, l, p, q) run
over the range of 1–3. The comma in a subscript denotes spatial differentiation, for example, σij,j =
∂σij/∂xj in which xj is the jth Cartesian coordinate direction. The Einstein summation convention
is used for the repeated indices. Two types of boundary conditions can be introduced

ui = ûi on ∂Bu and σijnj = t̂i on ∂Bσ (2.2)

in which ûi is the displacement prescribed on the boundary part ∂Bu, nj is the outward surface
unit vector and t̂i is the surface traction on the boundary part ∂Bσ . By assuming linear kinematics,
the strain εij can be expressed as the symmetrical gradient of the displacement field ui

εij = 1
2 (ui,j + uj,i). (2.3)

The Maxwell equation which governs the magnetic part has the form

Bi,i = 0 in B, (2.4)

where Bi is the magnetic induction. As the permittivity of the ferromagnetic materials is usually
much higher than that of the free space, the stray field effect is ignored here. Thus the magnetic
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boundary conditions can take the form of

Bini = B̂ on ∂BB and φ = φ̂ on ∂Bφ , (2.5)

where B̂ is the prescribed value on the boundary part ∂BB, φ is the scalar magnetic potential and φ̂

is the given potential on the boundary part ∂Bφ . The magnetic field Hi is defined by the negative
gradient of φ

Hi = −φ,i. (2.6)

(b) Balance law for magnetization
The magnetic-mechanical couple in ferromagnetic materials results from the existence and
rearrangement of ferromagnetic domains [4]. The free energy of the ferromagnetic materials is
also dependent on the magnetization configuration. In the continuum theory, the magnetization
configuration can be described by the distribution of the magnetization vector. To obtain
the distribution, one needs to first consider the balance law of magnetization. Though the
magnetization dynamics has been well established [8], in this subsection we employ the
configurational force theory [28–30] to represent the balance law, in order to support
the derivation of our phase field model in the following subsections.

As it has been mentioned, we consider only the isothermal process below the Currie
temperature and the phase transition temperature. Thus the magnitude of the magnetization
vector remains constant, and the configuration can be depicted by the unit magnetization
vector mi. The configurational force system for the configurational quantity mi includes the
configurational stress tensor Σij whose power density expended on the surface is ΣijnjMṁi, and
the internal and external configurational force vector gi and gex

i whose power density expended in
the volume is giMṁi and gex

i Mṁi, respectively. Owing to the rotation nature of the magnetization
[9], the angular momentum balance in the continuum aspect can be given as

∫
B

ṁi dv = γ0

(∫
∂B

εijkΣjlnlmk ds +
∫
B

εijkgjmk dv +
∫
B

εijkgex
j mk dv

)
, (2.7)

where γ0 is the gyromagnetic ratio with a positive constant value of 1.76 × 1011/(Ts), and εijk is
the permutation tensor. Converting the surface integration in (2.7) into volume integration and
considering its validity in any volume, we can obtain

1
γ0

ṁi = εijkΣjl,lmk + εijkΣjlmk,l + εijkgjmk + εijkgex
j mk. (2.8)

The magnetization can only change its direction, so the configurational force, which physically
is the driving force on the change of magnetization, should lie perpendicular to the direction of
the magnetization. In other words, the configurational force along the magnetization direction
must be zero. Thus, in any volume, we have

mi

(∫
∂B

Σijnj ds +
∫
B

gi dv +
∫
B

gex
i dv

)
= 0 ⇒ mi(Σij,j + gi + gex

i ) = 0. (2.9)

From (2.8) and (2.9), one has

Σij,j + gi + gex
i = 1

γ0
εijkmjṁk + Mi (2.10)

with Mi = εijkεjpqΣplmq,lmk.

(c) Thermodynamics
As pointed out in the Introduction, although the use of m(m1, m2, m3) as the order parameters is
straightforward, the numerical implementation of the constraint on the magnetization magnitude
can be complicated [22–25]. Herein, we use the polar and azimuthal angles (ϑ1, ϑ2) as order
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parameters. Thus the components of the unit magnetization vector in the corresponding Cartesian
coordinates are given as

m = m(ϑ1, ϑ2) =

⎡
⎢⎣sin ϑ1 cos ϑ2

sin ϑ1 sin ϑ2
cos ϑ1

⎤
⎥⎦ (2.11)

and

ṁi = Aμiϑ̇μ with Aμi =

⎡
⎢⎣cos ϑ1 cos ϑ2 − sin ϑ1 sin ϑ2

cos ϑ1 sin ϑ2 sin ϑ1 cos ϑ2
− sin ϑ1 0

⎤
⎥⎦. (2.12)

In this paper, the Greek indices μ and γ run over the range of 1–2. The constraint ‖m‖ = 1 is
satisfied automatically. The number of order parameters is also reduced from 3 to 2.

For the temperature-independent process, the Helmholtz free energy of the ferromagnetic
system with magnetic-mechanical couple can be taken as F = F̃ (εij, Bi, ϑμ, ϑμ,i). According to the
second law of thermodynamics, under the isothermal condition, the external power expended on
the control volume should not be less than the change rate in the Helmholtz free energy, i.e.∫

∂B
[σijnju̇i − φḂini + ΣijnjMAμiϑ̇μ] ds +

∫
B

[fiu̇i + gex
i MAμiϑ̇μ] dv ≥

∫
B
Ḟ dv. (2.13)

In this inequality, the internal configurational force gi is omitted as it has no external power. The
difference between the right-hand and left-hand terms is the dissipation. After the Legendre
transformation, the magnetic enthalpy H= H̃(εij, Hi, ϑμ, ϑμ,i) can be derived as H=F − BiHi.
Thus, the thermodynamic inequality (2.13) can be rewritten as∫

∂B
[σijnju̇i − φḂini + ΣijnjMAμiϑ̇μ] ds +

∫
B

[fiu̇i + gex
i MAμiϑ̇μ] dv

≥
∫
B

(Ḣ + BiḢi + HiḂi) dv (2.14)

or by the Gauss law∫
B

[(σij,j + fi)u̇i + σijε̇ij − φḂi,i + MΠμjϑ̇μ,j + M(Πμj,j + ζ ex
μ )ϑ̇μ] dv ≥

∫
B

(Ḣ + BiḢi) dv (2.15)

with
Πμj = AμiΣij and ζ ex

μ = Aμig
ex
i (2.16)

Here, Πμj and ζ ex
μ are the configurational stress tensor and the external configurational force, with

respect to the order parameters ϑμ, respectively.
Left multiplication of (2.10) by matrix Aμi leads to

AμiΣij,j + ζμ + ζ ex
μ = 1

γ0
sin ϑ1Iμγ ϑ̇γ + AμiMi (2.17)

in which ζμ = Aμigi is the internal configurational force with respect to ϑμ, and Iμγ is the
antisymmetric matrix

Iμγ =
[

0 −1
1 0

]
. (2.18)

Application of (2.17) and the form of H to (2.15) leads to
∫
B

{
(σij,j + fi)u̇i − φḂi,i +

(
σij − ∂H

∂εij

)
ε̇ij + M

[
AμiMi − AμiΣij,j − ζμ + Πμj,j − 1

M
∂H
∂ϑμ

]
ϑ̇μ

−
(

Bi + ∂H
∂Hi

)
Ḣi + M

(
Πμj − 1

M
∂H

∂ϑμ,j

)
ϑ̇μ,j

}
dv ≥ 0. (2.19)

Considering the field equations (2.1) and (2.4) and noticing that inequality (2.19) must be hold for
all admissible processes, based on the standard arguments of rational thermomechanics, we can
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obtain these constitutive relations

σij = ∂H
∂εij

, Bi = − ∂H
∂Hi

and Πμj = 1
M

∂H
∂ϑμ,j

. (2.20)

Given these relations, the residual dissipation inequality in (2.19) in the local form can be
derived as

− gdis
μ ϑ̇μ ≥ 0, (2.21)

where

gdis
μ = −AμiMi + AμiΣij,j + ζμ − Πμj,j + πμ, πμ = 1

M
∂H
∂ϑμ

(2.22)

The residual dissipation inequality (2.21) is satisfied by setting

gdis
μ = −βμγ ϑ̇γ , (2.23)

where βμγ is the components of a positive semi-definite matrix which can be derived through a
non-concave dissipation potential D(ϑμ)

βμγ = ∂2D
∂ϑ̇μ∂ϑ̇γ

. (2.24)

Combining (2.17), (2.22) and (2.23), we can obtain a generalized form of the evolution equation
for the order parameters ϑμ as

Πμj,j − πμ + ζ ex
μ =

(
1
γ0

sin ϑ1Iμγ + βμγ

)
ϑ̇γ . (2.25)

It should be noted that when the Rayleigh dissipation functional is adopted, (2.25) can be
reduced to the standard LLG equation. In fact, inserting the Rayleigh dissipation potential [9]

D = ν

2
ṁiṁi = ν

2
(ϑ̇1

2 + sin2 ϑ1ϑ̇2
2) (2.26)

into (2.24), one has

βμγ = νPμγ with Pμγ =
[

1 0
0 sin2 ϑ1

]
. (2.27)

Insertion of (2.27) into (2.25) leads to

Πμj,j − πμ + ζ ex
μ = 1

γ0
Lμγ ϑ̇γ , (2.28)

where

Lμγ =
[

α − sin ϑ1
sin ϑ1 α sin2 ϑ1

]
(2.29)

and α = γ0ν is the damping coefficient which generally appears in the LLG equation. As it is well
known, the LLG equation is given in terms of m in the following form:

ṁ = −γ0μ0m × Heff + αm × ṁ, (2.30)

where Heff is the effective field obtained by variational derivation of the total magnetic enthalpy
with respect to m, μ0 is the vacuum permeability constant and × denotes the cross product of two
vectors. By using the relation m = (sin ϑ1 cos ϑ2, sin ϑ1 sin ϑ2, cos ϑ1), it is not difficult to prove that
(2.30) is equivalent to (2.28). For more details, one is referred to the appendix A.

(d) Magnetic enthalpy
In the micromagnetic model, the free energy determined by the magnetization configuration
contains the elastic contribution Hela, the magnetocrystalline anisotropy contribution Hani, the
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exchange contribution Hexc and the magnetostatic contribution Hmag. For a cubic crystal, the
following magnetic enthalpy is used

H=Hela + Hani + Hexc + Hmag (2.31)

with
Hela = 1

2 Cijkl(εij − ε0
ij)(εkl − ε0

kl),

Hani = K1(m2
1m2

2 + m2
2m2

3 + m2
3m2

1) + K2m2
1m2

2m2
3

= K1(sin4 ϑ1 sin2 ϑ2 cos2 ϑ2 + sin2 ϑ1 cos2 ϑ1)

+ K2 sin4 ϑ1 cos2 ϑ1 sin2 ϑ2 cos2 ϑ2,

Hexc = Aemi,jmi,j = Ae(ϑ1,jϑ1,j + sin2 ϑ1ϑ2,jϑ2,j)

and Hmag = − 1
2 μ0HiHi − μ0MHimi(ϑμ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.32)

where Cijkl is the component of the material elastic tensor, Ae is the exchange constant, and K1 and
K2 are the magnetocrystalline anisotropy constants. Spontaneous magnetization-induced strain
ε0

ij, for cubic crystals, can be described as

ε0
11 = 3

2 λ100(sin2 ϑ1 cos2 ϑ2 − 1
3 ), ε0

12 = ε0
21 = 3

4 λ111 sin2 ϑ1 sin 2ϑ2

ε0
22 = 3

2 λ100(sin2 ϑ1 sin2 ϑ2 − 1
3 ), ε0

23 = ε0
32 = 3

4 λ111 sin 2ϑ1 sin ϑ2

and ε0
33 = 3

2 λ100(cos2 ϑ1 − 1
3 ), ε0

31 = ε0
13 = 3

4 λ111 sin 2ϑ1 cos ϑ2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.33)

where λ100 and λ111 is the magnetostriction strain along the direction 〈100〉 and 〈111〉 of a single
crystal, respectively, when it is magnetized at saturation along this direction.

With the above-specified magnetic enthalpy, the constitutive relations in (2.20) can be given as

σij = Cijkl(εkl − ε0
kl),

Bi = μ0[Hi + Mmi(ϑμ)]

and Πμj = 2Ae

M
Pμγ ϑγ ,j.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.34)

The evolution equation (2.28) can be derived as

Πμj,j − 1
M

∂H
∂ϑμ

+ ζ ex
μ = 1

γ0
Lμγ ϑ̇γ , (2.35)

where

∂H
∂ϑμ

= −
∂ε0

ij

∂ϑμ
σij + ∂Hani

∂ϑμ
+ AeQμ − μ0MAμiHi, with Qμ =

[
sin 2ϑ1ϑ2,jϑ2,j

0

]
. (2.36)

The boundary condition and initial condition for ϑ can be set as

ϑμ = ϑ̂μ on ∂Bϑ , ϑμ,jnj = Θ̂μ on ∂BΘ and ϑμ(xi, t)|t=0 = ϑ̂0
μ(xi) in B. (2.37)

The combination of (2.31)–(2.36) constitutes the constraint-free formulation of the continuum
phase field model for ferromagnetic materials. No additional constraint on the magnitude of M is
required, because ‖M‖ = M has been intrinsically implemented in the model.

3. Finite-element implementation

(a) Dimensionless form
A direct implementation of the constrain-free model in the physical dimension leads to equation
systems with large condition numbers in the order of 1017. This can be due to the varying orders of
the parameters in the magnetic and the mechanical problem. For example, the elastic constant is in
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the order of 1011, whereas the vacuum permeability is in the order of 10−6. Hence, a dimensionless
form of the constrain-free model is implemented here. The model is normalized via the following
ansatz

K∗
1 = 1, μ∗

0 = 1, A∗
e = 1, H∗ = H

K1
, K∗

2 = K2

K1
, t∗ = γ0K1t

M

x∗
i = xi

√
K1

Ae
, (),i∗ = ∂()

∂x∗
i

, u∗
i = ui

√
K1

Ae
, M∗ = M

√
μ0

K1

C∗
ijkl = Cijkl

K1
, σ ∗

ij = σij

K1
, ε∗

ij = εij, ε0∗
ij = ε0

ij, H∗
i = Hi

√
μ0

K1

B∗
i = Bi√

K1μ0
, ϑ̇∗

μ = ϑ̇μM
(K1γ0)

, φ∗ = φ

√
μ0

Ae
, f ∗

i = fi
√

Ae/K1

K1

and ζ ex∗
μ = ζ ex

μ M

K1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

The magnetic enthalpy, the field equations, the constitute relations and the evolution equation
take the corresponding dimensionless form as follows:

H∗ = 1
2 C∗

ijkl(ε
∗
ij − ε0∗

ij )(ε∗
kl − ε0∗

kl ) + m2
1m2

2 + m2
2m2

3 + m2
3m2

1 + K∗
2m2

1m2
2m2

3

+ ϑ1,j∗ϑ1,j∗ + sin2 ϑ1ϑ2,j∗ϑ2,j∗ − 1
2 H∗

i H∗
i − M∗H∗

i mi (3.2)

σ ∗
ij,j∗ + f ∗

i = 0 in B (3.3)

B∗
i,i∗ = 0 in B (3.4)

ε∗
ij = 1

2 (u∗
i,j∗ + u∗

j,i∗ ), H∗
i = −φ∗

,i∗ in B (3.5)

σ ∗
ij = C∗

ijkl(ε
∗
kl − ε0∗

kl ), B∗
i = H∗

i + M∗mi, Π∗
μj = 2Pμγ ϑγ ,j∗ (3.6)

and Π∗
μj,j∗ − ∂H∗

∂ϑμ
+ ζ ex∗

μ = Lμγ ϑ̇∗
γ . (3.7)

The dimensionless boundary and initial conditions are

u∗
i = û∗

i on ∂Bu, σ ∗
ij n∗

j = t̂∗i on ∂Bσ ,

B∗
i n∗

i = B̂∗ on ∂BB, φ∗ = φ̂∗ on ∂Bφ ,

ϑ = ϑ̂ on ∂Bϑ , ϑμ,j∗ n∗
j = Θ̂∗

μ on ∂BΘ

and ϑμ(x∗
i , t∗)|t∗=0 = ϑ̂0

μ(x∗
i ) in B

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.8)

Here, Θ̂∗
μ is the boundary value defined for ϑμ,j∗ , as it is shown in (2.37).

Remark. In the next section for the finite element formulation, only the dimensionless form of
the phase field model will be employed. The superscript stars are hence omitted for notational
simplicity.

(b) Finite-element formulation
The presented phase field model in the constraint-free form is implemented in the three-
dimensional finite-element method. The discretization is achieved by eight-node linear elements.
For more details, readers are referred to standard textbooks on finite-element methods [31].
The displacement u(u1, u2, u3), the scalar magnetic potential φ, and the polar and azimuthal
angles ϑ(ϑ1, ϑ2) are taken as independent variables. Thus, each node has six degrees of freedom
dI = [uI

1 uI
2 uI

3 φI ϑ I
1 ϑ I

2]T, where the superscript I indicates the element node and the underbar
denotes a matrix. Note that if m is taken as the order parameter, it requires not only additional
constrain of ‖m‖ = 1, but also one more degree of freedom. In this sense, the constraint-free
formulation favours an efficient numerical implementation.
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The body force fi in (3.3) and the external configurational force ζ ex
μ in (3.7) are neglected.

Actually, ζ ex
μ can be given by setting the boundary condition of φ. With these simplicities,

corresponding to the strong forms in (3.3), (3.4) and (3.7), the following three weak forms could
be formulated

0 = −
∫
B

σijη
u
i,j dv +

∫
∂B

t̂iη
u
i ds,

0 = −
∫
B

Biη
φ

,i dv +
∫
∂B

B̂ηφ ds

and 0 = −
∫
B

[(
Lμγ ϑ̇γ + ∂H

∂ϑμ

)
ηϑ

μ + Πμjη
ϑ
μ,j

]
dv +

∫
∂B

2Pμγ Θ̂γ ηϑ
μ ds,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.9)

where ηu
i , ηφ and ηϑ

μ are the test functions for ui, φ, and ϑμ, respectively.
By introducing the shape functions for the independent variables, the rate of the polar and

azimuthal angles, and the test functions, the discretized equations are obtained as

u =
∑

I

NI
uuI, ηu =

∑
I

NI
uηuI, φ =

∑
I

NI
φφI, ηφ =

∑
I

NI
φηφI

and ϑ =
∑

I

NI
ϑϑ I, ϑ̇ =

∑
I

NI
ϑ ϑ̇

I, ηϑ =
∑

I

NI
ϑηϑI.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.10)

The superscript I denotes the node number. NI
u, NI

φ and NI
ϑ are the shape functions for the

displacements, the scalar magnetic potential and the polar and azimuthal angles, respectively. In
this paper, the underbar denotes Voigt notation of the corresponding quantities. Accordingly, the
strain in (2.3), the magnetic field in (2.6) and ηϑ

μ,j can be given as

εεε =
∑

I

BI
uuI, H = −

∑
I

BI
φφI and ∇ηϑ =

∑
I

BI
ϑηϑI (3.11)

and the constitutive relations in (3.6) as

σ =CCC(εεε − εεε0), B = H + Mm

and Π = [ϑ1,1 sin2 ϑ1ϑ2,2 ϑ1,2 sin2 ϑ1ϑ2,1 ϑ1,3 sin2 ϑ1ϑ2,3]T.

⎫⎬
⎭ (3.12)

In the three-dimensional case, the matrices in (3.11) can be given as

BI
u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI
u,1 0 0
0 NI

u,2 0
0 0 NI

u,3
NI

u,2 NI
u,1 0

0 NI
u,3 NI

u,2
NI

u,3 0 NI
u,1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, BI
ϑ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI
ϑ ,1 0
0 NI

ϑ ,2
Nϑ ,2 0

0 NI
ϑ ,1

NI
ϑ ,3 0
0 NI

ϑ ,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and BI
φ =

⎡
⎢⎣

NI
φ,1

NI
φ,2

NI
φ,3

⎤
⎥⎦ . (3.13)

Inserting the (3.10)–(3.13) into the weak forms (3.9) and taking the integration over the volume
Be of one element, we can obtain the element residuals

RI
u = −

∫
Be

(BI
u)Tσ dv,

RI
φ = −

∫
Be

(BI
φ)TB dv

and RI
ϑ = −

∫
Be

[
NI

ϑ

(
L ϑ̇ + ∂H

∂ϑ

)
+ (BI

ϑ )TΠ

]
dv.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.14)

Note that the surface terms in (3.14) can be integrated by applying the boundary conditions in
the finite-element software. Thereby, they are here ignored. The determination of the boundary
conditions on the order parameter is not a trivial task. In the following, we will tacitly assume
homogeneous Neumann type boundary conditions, i.e. ϑμ,jnj = Θ̂μ = 0. Note that this Neumann
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boundary automatically leads to the boundary mi,jnj = Aμi(ϑμ,jnj) = 0 which is widely used in the
conventional phase field model.

With respect to the time dependence of the residual, we use the implicit backward Euler time
integration ḋ = (dn+1 − dn)/�t. The quantities at the previous time-step tn are denoted by RI

n and

dJ
n. The equation for the current time-step tn+1

RI
n+1 = RI

(
dJ

n,
dJ

n+1 − dJ
n

�t

)
(3.15)

should be solved to obtain dJ
n+1. For solving these nonlinear equations, the Newton iteration

scheme is performed at each time step. The corresponding iteration matrix for one element is

SIJ = KIJ + 1
�t

DIJ . (3.16)

From the residuals, the stiffness matrix KIJ and the damping matrix DIJ can be calculated by

derivation with respect to uJ, φJ, ϑ J and u̇J , φ̇J, ϑ̇
J , respectively. Specifically, the non-zero stiffness

matrix can be derived as

KIJ
uu = −∂RI

u
∂uJ =

∫
Be

(BI
u)T

CCC BJ
u dv, KIJ

uϑ = −∂RI
u

∂ϑ J = −
∫
Be

(BI
u)T

CCC
∂εεε0

∂ϑ
NJ

ϑ dv (3.17)

KIJ
φφ = −

∂RI
φ

∂φJ = −
∫
Be

(BI
φ)TBJ

φ dv, KIJ
φϑ = −

∂RI
φ

∂ϑ J =
∫
Be

(BI
φ)TMATNJ

ϑ dv (3.18)

KIJ
ϑu = −∂RI

ϑ

∂uJ = −
∫
Be

NI
ϑ

(
∂εεε0

∂ϑ

)T

CCC BJ
u dv,

KIJ
ϑφ = −∂RI

ϑ

∂φJ =
∫
Be

NI
ϑMA BJ

φ dv

and KIJ
ϑϑ = −∂RI

ϑ

∂ϑ J =
∫
Be

[
NI

ϑ

(
∂(L ϑ̇)

∂ϑ J + ∂2H
∂ϑ∂ϑ J

)
+ (BI

ϑ )T ∂Π

∂ϑ J

]
dv

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.19)

and the damping matrix as

DIJ
ϑϑ = −∂RI

ϑ

∂ϑ̇
J =

∫
Be

NI
ϑNJ

ϑL dv. (3.20)

All other components of the damping matrix are zero. Note that the stiffness matrix components
KIJ

ϑϑ and the damping matrix components DIJ
ϑϑ are unsymmetric. This unsymmetric characteristic

is intrinsically attributed to the precession nature of magnetization dynamics. The elements are
all integrated using a standard eight point Gauss integration scheme. It should be noted that this
procedure is in the element level. For the whole simulated object, the above nonlinear equations
and iteration matrix should be assembled into the global ones. The model is implemented as a
user element in the software FEAP [32].

4. Simulation results
As a typical magnetostrictive material, Fe81.3Ga18.7 is simulated by using the constraint-free phase
field model and its finite-element implementation. The material parameters are taken from the
literature [14,33] and are listed in table 1. For the simulation of precession in §4a, a single element
test was used. For the study of domains, a thin film nanostructure is simulated, in order to
obtain the characteristic features and simultaneously save computation time. The sample mesh
is 10 × 20 × 1. Given that the exchange coefficient of Fe81.3Ga18.7 has a similar magnitude as
Fe (Ae ∼ 10−11 J m−1), the original size of the simulated sample is around 30 × 60 × 3 nm3. The
finite-element mesh size is chosen in a manner that a smooth variation of the magnetization
over the whole sample should be resolved by the discretization. This means that the obtained
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precession

Heff

precessional switching

m

Figure 1. Illustration on precession and precessional switching of magnetization. (Online version in colour.)

Table 1. Material parameters of Fe81.3Ga18.7.

parameter name original value dimensionless value

C11 elastic constant 196 GPa 9.8 × 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C12 elastic constant 156 GPa 7.8 × 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C44 elastic constant 123 GPa 6.15 × 106
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K1 anisotropy coefficient 2 × 104 J m−3 1.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K2 anisotropy coefficient −4.5 × 104 J m−3 −2.25
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ae exchange coefficient ∼ 10−11 J m−1 1.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

M saturation magnetization 1.432 × 106 A m−1 11.348
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ100 magnetostrictive constant 2.64 × 10−4 2.64 × 10−4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

λ111 magnetostrictive constant 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

μ0 vacuum permeability 4π × 10−7 H m−1 1.0


domain wall should span over at least two or more elements. Note that continuum models have
been often used to study ferromagnetic domains in nanostructures [10,13,15,17,23]. As it will be
shown by the comparison with experimental observations in §4b, the choice of the sample size
30 × 60 × 3 nm3 and the application of our continuum phase field model are legitimate. For all
the examples, the boundary condition ϑμ,jnj = 0 is used. This leads to the boundary condition
mi,jnj = Aμi(ϑμ,jnj) = 0, which is commonly assumed in the literature (e.g. [8,13,15,23]).

(a) Precession and precessional switching
Precession and precessional switching are basic physical phenomena in magnetization dynamics
[34]. If there is no damping (i.e. no dissipation), the instantaneous change in m should be
perpendicular to both the external field and the direction of m. In other words, the effective
magnetic field (Heff) is unable to rotate m towards its direction, and m rotates itself around Heff

with a constant angle, as it is shown by the thin line in figure 1. This phenomenon is the so-called
precession. If there is damping, m can be gradually rotated towards the direction of Heff and
forms a spiral-type path, as it is illustrated by the thick green line in figure 1. This is called as
precessional switching. The spiral-type path can vary with the damping coefficient.

As a benchmark example, the constraint-free phase field model is used to reproduce precession
and precessional switching. To simulate this behaviour of a monodomain, a single finite element
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Figure 2. (a) Initial magnetization configuration and the external field for one-element simulation. (b) Simulated precession
behaviour and damping-dependent precessional switching. (Online version in colour.)

should be sufficient. As shown in figure 2a, the initial magnetization is in the x1-direction, while
the external magnetic field Hex∗ is applied in the x3-direction. A field of Hex∗ = 1.0 is exerted by
applying a magnetic potential difference to the two surfaces perpendicular to the x3-direction.
The simulated rotation path of m is presented in figure 2b, for different damping coefficient α.
In the case of α = 0, namely no damping, m rotates around Hex∗, and the rotation trajectory is
an in-plane circle perpendicular to the x3-direction. It indicates that the precession behaviour
is reproduced. In the cases of α > 0, damping dependent precessional switching is observed.
When α is very small, for example α = 0.01, a large number of precessional loops occur till m is
oriented along the direction of Hex∗. When α is moderately small, for example α = 0.1, much less
number of loops is required. When α is relatively large, for example α = 1.0, 10 and 100, less than
one precessional loop is needed, and m directly rotates towards Hex∗.The rotation trajectory lies
nearly in one plane. These simulation results of precession and precessional switching indicate
that magnetization switching dynamics has been soundly considered in the constraint-free phase
field model.

(b) Domain and magnetic vortex
The proposed model is further applied to simulate the domain structure in a thin nanostructure
which is free from mechanical and magnetic load, as shown in figure 3. The mechanical boundary
condition for all the sample surfaces is traction-free, i.e. σ ∗ · n = 0. The magnetic boundary is set
as B∗ · n = 0 and the damping coefficient α = 1.0. We start with an initial random distribution
shown in figure 3a and then perform finite-element simulation till the equilibrium state is
obtained. As it is shown in figure 3b, two vortices are formed in the equilibrium configuration.
The vortex, a curling configuration with a core, consists of four domains separated by 90◦
domain walls. Most interestingly, in the vortex core, the magnetization rotates gradually out
of the plane. This phenomenon makes our simulation results essentially different from the
vortices given in the literature [23,25]. It should be noted that this simulated vortex with curling
and out-of-plane structure is attributed to the constraint on magnetization magnitude. In the
vortex core, due to the strictly satisfied constraint ‖m‖ = 1, the magnetization cannot vanish
(must be unit) and turns perpendicular to the surface, thus avoiding the singularity. This is
different in the case of ferroelectrics, where the polarization has no constraint in its magnitude
and it can remain in-plane by reducing its magnitude to very small values [20]. In fact, with
‖m‖ = 1, magnetization in the vortex remaining in plane would significantly increase both the
exchange and the magnetocrystalline anisotropy energy. As the out-of-plane m2-direction is also
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Figure 3. (a) Initial (i) and equilibrium (ii) magnetization configuration in a free- standing sample. The magnetic boundary
condition is B∗ · n= 0. (b) The contour plot ofm1 in the equilibrium state. (c) Comparison of themeasured and the calculated
out-of-plane component m2 along the line CC′ shown in (b). (d) Comparison of the measured and the calculated in-plane
component m1 along the line DD′. Both CC′ and DD′ go through the vortex core. The experimental signal is taken from ref.
[35]. (Online version in colour.)

the easy axis, the curling and twisting-out structure largely decreases the exchange energy and
the magnetocrystalline anisotropy energy and thus is energetically favourable. Note that we
have also considered a larger sample with size of 30 × 60 × 9 nm3 and found that the domain
configuration has no significant difference.

This simulated vortex phenomenon is consistent with the experimental observations in
nanoscale ferromagnetic thin films [35]. Figure 3c shows the comparison of the out-of-plane
component m2 along the line CC′ shown in figure 3b. A good agreement can be seen between
the measured and the calculated results. Furthermore, the in-plane component m1 along the line
DD′ is also considered. As demonstrated in figure 3d, the experimental and the simulated results
agree well with each other. In particular, the measured and the calculated profiles show a vortex
width of around 9 nm, also in accordance with the experimental measurements [35].

(c) Evolution of the vortex configuration under magnetic loading
Simulation is performed to show domain poling under a magnetic field. As an example, the
equilibrium state in figure 3a is taken as the initial configuration. The external magnetic field
Hex∗ = 1.0 is applied antiparallel to the x3-direction. The damping coefficient is set as 1.0. As it
is shown in figure 4a, the two vortices move oppositely towards the sample corners. The motion
trajectory of the vortices is approximately along the in-plane diagonal of the sample. After these
vortices vanish at the corners, a uniform configuration is formed gradually. The whole evolution
procedure can also be demonstrated through the contour plot of the component m3, as it is shown
in figure 4b. During this process, the regions with magnetization parallel to the external magnetic
field expand gradually, whereas the regions with magnetization antiparallel and perpendicular
to the external magnetic field shrink. It should be noted that the moving direction of the vortex
has the component perpendicular to the external magnetic field, which is consistent with the
experimental observation [36].

(d) 180◦ domain wall evolution under magnetic loading
As another example, the evolution of a 180◦ domain wall under an external magnetic field is
investigated. As reported in §4a, the magnetization switching is dependent on the damping
coefficient α. It has been even evidenced that the damping-induced dissipation is the driving
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Figure 4. (a) Domain evolution under an external magnetic field, from the initial vortices configuration to a monodomain
configuration. (b) Contour plot ofm3 during the evolution process shown in (a). (Online version in colour.)
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Figure 5. Magnetization distribution and contour plot of the out-of-plane component m2 at t∗ = 5 × 10−5 for the case
(a)α = 0.01, (b)α = 0.1, (c)α = 1.0 and (d)α = 10.0. (Online version in colour.)

force for magnetic domain wall motion [37]. If there is no damping, the motion of the domain
wall will not occur. In this subsection, we show that the magnetization switching of the 180◦
domain configuration can also be damping dependent. Figure 5 shows the distribution of out-
of-plane magnetization m2. When the damping is small, e.g. α = 0.01, 0.1, the magnetization near
the 180◦ wall rotates out of the plane, as it is shown in figure 5a,b. Whereas, it can be seen that
when the damping is large, e.g. α = 1.0, 10.0, the rotation of magnetization is almost constrained
in the plane, as shown in figure 5c,d. Intrinsically, this behaviour is attributed to the magnetization
dynamics. By a LLG-type evolution equation which has only a damping term and no precession
term, Miehe et al. showed in-plane rotation of magnetization [25]. Wang et al. used the TDGL
equation (not the LLG equation) that intrinsically cannot involve the damping effect and found
that most magnetization vectors rotate in plane [15].

For a comparison, the evolution of the 180◦ wall in the cases of α = 0.1 and 10.0 is specifically
given in figure 6. In the case of α = 0.1, the magnetization near the wall first rotates out of plane,
destroying the sharp 180◦ wall configuration. Then the magnetization away from the wall also
rotates out of plane, and two vortices initiate at the sample boundary. Subsequently, the vortex
in the region whose magnetization is along the external magnetic field rapidly disappears. The
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Figure 6. Poling of a 180◦ domain wall configuration for the case (a)α = 0.1 and (b)α = 10.0. (Online version in colour.)

other vortex forms and moves from one edge towards another edge under the drive of the
external magnetic field. Finally, this vortex moves to the up-left corner and disappears there. The
magnetization in the whole sample is then aligned along the the external magnetic field. Owing
to the out-of-plane rotation of the magnetization and the formation of vortices, this evolution
process is relatively complicated. During this process, the 180◦ wall was totally destroyed, and
new magnetization configurations were constructed. By contrast, the evolution process in the case
of large damping α = 10.0 is much simpler, as one can see in figure 6b. The magnetization merely
rotates in the plane and the 180◦ wall becomes diffusive. The magnetization in the left region,
initially antiparallel to the external magnetic field, always rotates counterclockwise to be aligned
along the external magnetic field. While the magnetization in the right region, initially parallel to
the external magnetic field, rotates firstly clockwise and then counterclockwise. In summary, the
poling process of a 180◦ domain configuration is strongly dependent on the damping coefficient
α. It should be noted that a thicker sample with a mesh of 10 × 20 × 3 is also calculated and it is
found that the evolution process is almost the same.

(e) Domain evolution under mechanical loading
Besides the ferromagnetic switching, the constraint-free phase field model can also simulate
the ferroelastic switching. It essentially makes this phase field model different from the
micromagnetic models. In the simulation, the equilibrium vortex structure is taken as the initial
configuration, as shown in figure 7a. The mechanical load is applied by assigning displacement.
The surface at x∗

3 = 0 is fixed, and the displacement at the opposite surface is set as u∗
3 = 0.07 for
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Figure 7. Mechanically driven domain evolution. (a) Initial magnetization configuration. Equilibrium states under (b) a tensile
stress and (c) a compressive stress along the x3-direction. The domain configuration for the case of (d) initial state, (e) tensile
stress and (f ) compressive stress. (g) The change ofm2 along the horizontal lines in (d–f ). (Online version in colour.)

the case of tension and u∗
3 = −0.07 for the case of compression. The damping coefficient is 1.0.

It is shown in figure 7b that the tensile loading causes the circular vortices to be elliptical, with
the major axis along the tensile direction. As for the domains, the tensile loading increases the
fraction of domains with the magnetization along the x3-direction at the expense of domains
with the magnetization along the x1-direction, as shown in figure 7e. On the contrary, under
the compressive loading, elliptical vortices with major axis perpendicular to the compressive
direction appear (figure 7c). The fraction of domains with magnetization along the x1-direction
remarkably increases (figure 7f ). These results are expected. A tensile stress increases the
regions of domains with magnetization parallel to the x3-direction, whereas a compressive stress
decreases them. By examining the out-of-plane magnetization component m2 along the line
through the vortex, we can quantitatively obtain the changes in vortex, as shown in figure 7g.
With respect to the x1-direction, the vortex becomes narrower under tensile loading while wider
under compressive loading.

5. Conclusion
In conclusion, we have proposed a continuum constraint-free phase field model for ferromagnetic
materials. Unlike conventional phase field models which take m(m1, m2, m3) as the order
parameters, the constraint-free phase field model uses the polar and azimuthal angles (ϑ1, ϑ2). As
a result, the constraint on magnetization is satisfied automatically within the model itself, and no
additional numerical strategy for the phase field evolution is needed. The model was developed
in a thermodynamic framework. Based on a configurational force system for (ϑ1, ϑ2) and the
second law of thermodynamics, a set of thermodynamically consistent constitutive relations and
a generalized evolution equation for the order parameters (ϑ1, ϑ2) have been obtained. As it has
been shown in §3 that the model leads to a straightforward three-dimensional finite-element
implementation, which requires no numerical treatment on the constraint and has one less degree
of freedom.

The presented numerical simulations evidence that the model can readily predict the
fundamental phenomenon in ferromagnetic domain switching. Reproduction of precession and
damping-dependent precessional switching behaviour shows that the model gives a physically
sound switching dynamics. Results on domain structure in a free-standing thin film demonstrates
that the magnetization rotates around the vortex core and gradually twists out of the plane.
The magnetization distribution around the vortex and the vortex width agree well with
experimental observations. Under an external magnetic field, the vortex motion has a component
perpendicular to the magnetic field, which is also consistent with experimental observations.
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Ferromagnetic switching of 180◦ domain configuration is damping-dependent. Magnetization
rotates out of plane and a vortex tends to form in the case of small damping, whereas
magnetization is constrained into in-plane rotation in the case of large damping. Examples have
been given for ferroelastic switching, i.e. domain evolution under mechanical loading. It is found
that a tensile loading increases the fraction of domains along the tensile direction, whereas
a compressive loading increases the fraction of domains perpendicular to the compressive
direction. Accordingly, the vortex will change from a circular shape to an elliptical shape.

It can be concluded from the simulations that a three-dimensional model and implementation
is indispensable, and the switching mechanism of magnetization is spatial. Furthermore, the
ferromagnetic domain evolution is strongly damping dependent. These two features have not
been well considered in the conventional phase field models in the literature. In our future work,
the mesoscopic response of ferromagnetic materials will be investigated by using this model.
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Appendix A
With ṁi = Aμiϑ̇μ and m = [sin ϑ1 cos ϑ2 sin ϑ1 sin ϑ2 cos ϑ1]T, the LLG equation (2.30) can be
written as

⎡
⎢⎣ϑ̇1 cos ϑ1 cos ϑ2 − ϑ̇2 sin ϑ1 sin ϑ2

ϑ̇1 cos ϑ1 sin ϑ2 + ϑ̇2 sin ϑ1 cos ϑ2
−ϑ̇1 sin ϑ1

⎤
⎥⎦= −γ0μ0

⎡
⎢⎣sin ϑ1 cos ϑ2

sin ϑ1 sin ϑ2
cos ϑ1

⎤
⎥⎦×

⎡
⎢⎣Heff

1
Heff

2
Heff

3

⎤
⎥⎦

+ α

⎡
⎢⎣sin ϑ1 cos ϑ2

sin ϑ1 sin ϑ2
cos ϑ1

⎤
⎥⎦×

⎡
⎢⎣ϑ̇1 cos ϑ1 cos ϑ2 − ϑ̇2 sin ϑ1 sin ϑ2

ϑ̇1 cos ϑ1 sin ϑ2 + ϑ̇2 sin ϑ1 cos ϑ2
−ϑ̇1 sin ϑ1

⎤
⎥⎦

= −γ0μ0

⎡
⎢⎣ sin ϑ1 sin ϑ2Heff

3 − cos ϑ1Heff
2

cos ϑ1Heff
1 − sin ϑ1 cos ϑ2Heff

3
sin ϑ1 cos ϑ2Heff

2 − sin ϑ1 sin ϑ2Heff
1

⎤
⎥⎦

+ α

⎡
⎢⎣−ϑ̇1 sin ϑ2 − ϑ̇2 sin ϑ1 cos ϑ1 cos ϑ2

ϑ̇1 cos ϑ2 − ϑ̇2 sin ϑ1 cos ϑ1 sin ϑ2
ϑ̇2 sin2 ϑ1

⎤
⎥⎦ . (A 1)

Left multiplying (A 1) with the matrix

[
− cos ϑ1 cos ϑ2 sin ϑ1 − cos ϑ1 sin ϑ2 sin ϑ1 sin2 ϑ1

− sin ϑ2 cos ϑ2 0

]
(A 2)

can give

[
ϑ̇2 sin ϑ1

−ϑ̇1 sin ϑ1

]
= −γ0μ0

[
cos ϑ1 cos ϑ2Heff

1 + cos ϑ1 sin ϑ2Heff
2 − sin ϑ1Heff

3
− sin ϑ1 sin ϑ2Heff

1 + sin ϑ1 cos ϑ2Heff
2

]
+ α

[
ϑ̇1

sin2 ϑ1ϑ̇2

]

⇒
[

ϑ̇2 sin ϑ1 − αϑ̇1
−ϑ̇1 sin ϑ1 − α sin2 ϑ1ϑ̇2

]

= −γ0μ0

[
cos ϑ1 cos ϑ2Heff

1 + cos ϑ1 sin ϑ2Heff
2 − sin ϑ1Heff

3
− sin ϑ1 sin ϑ2Heff

1 + sin ϑ1 cos ϑ2Heff
2

]
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⇒ 1
γ0

[
α − sin ϑ1

sin ϑ1 α sin2 ϑ1

][
ϑ̇1
ϑ̇2

]

= μ0

[
cos ϑ1 cos ϑ2 cos ϑ1 sin ϑ2 − sin ϑ1

− sin ϑ1 sin ϑ2 sin ϑ1 cos ϑ2 0

]⎡⎢⎣Heff
1

Heff
2

Heff
3

⎤
⎥⎦

⇒ 1
γ0

Lμγ ϑ̇γ = μ0AμjH
eff
j . (A 3)

Incorporating the external magnetic field gex
j /μ0, the effective field can be derived as

Heff
j = − 1

μ0M
δH
δmj

+
gex

j

μ0
= − 1

μ0M

(
∂H
∂mj

− 2Aemj,ii

)
+

gex
j

μ0
. (A 4)

Thus,

μ0AμjH
eff
j = − 1

M
Aμj

∂H
∂mj

+ 2Ae

M
Aμjmj,ii + Aμjg

ex
j

= − 1
M

∂H
∂ϑμ

+ 2Ae

M
(Pμγ ϑγ ,ii + Pμγ ,iϑγ ,i) + ζ ex

μ

= −πμ + Πμj,j + ζ ex
μ . (A 5)

Combining (A 3) and (A 5) yields

Πμj,j − πμ + ζ ex
μ = 1

γ0
Lμγ ϑ̇γ (A 6)

which is the same as the evolution equation in (2.28).
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