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We perform a combined first-principles and micromagnetic study on the strain effects in Nd-Fe-B
permanent magnets. First-principles calculations on Nd2Fe14B reveal that magnetocrystalline anisotropy
(K) is insensitive to deformation along the c axis, and that a-b in-plane shrinkage is responsible for K
reduction. The predicted K is more sensitive to lattice deformation than the previous phenomenological
model suggests. The biaxial and triaxial stress states have a greater impact on K. Negative K occurs in a
much wider strain range in the a-b biaxial stress state. Micromagnetic simulations of Nd-Fe-B magnets
using first-principles results show that a 3% to 4% local strain in a 2-nm-wide region near the interface
around the grain boundaries and triple junctions leads to a negative local K and thus, remarkably, decreases
the coercivity by about 60%, or 3 to 4 T. The local a-b biaxial stress state is more likely to induce a large
loss of coercivity. In addition to the local stress states and the strain levels themselves, the shape of the
interfaces and the intergranular phases also makes a difference. Smoothing the edge and reducing the sharp
angle of the triple regions in Nd-Fe-B magnets would be favorable for a coercivity enhancement.
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I. INTRODUCTION

Strain can be utilized to tailor the magnetic properties
of many materials, leading to either promising applications
or undesirable problems. For example, strain effects in soft
magnetic materials can be used for the electric control
of magnetic properties by using the strain-mediated mag-
netoelectric coupling [1,2]. In addition, strain-mediated
magnetization switching has been a potential way of
revolutionizing the spintronic devices that currently utilize
power-dissipating currents [3–7]. In the permanent magnets
which are featured in high-coercivity and high-maximal-
energy products, local strain around the grain boundaries
and triple junctions is thought to reduce the local magneto-
crystalline anisotropy—and thus the coercivity [8–14]—
degrading the magnetic performance. This fact indicates
strain as a double-edged sword in magnetic materials.
Understanding strain’s effects is a prerequisite for a wise
application or avoidance of this double-edged sword.
In this work, we focus on the strain effects in a typical

permanent magnet, Nd-Fe-B. In Nd-Fe-B magnets, strain
effects are inevitable. On the one hand, sintering processes,
post-thermal treatments, and hot pressing unavoidably
induce a certain residual strain. Such strain can be either
at the bulk level or at the local level. On the other hand, the
coercivity of standard Nd-Fe-B magnets is only about 20%
of the theoretical upper limit from the Stoner-Wohlfarth
model. The huge deviation from the theoretical prediction

is believed to be mainly originated from the microstructural
effects [8,15–18]. The critical microstructural features that
affect the coercivity are the intergrain phases and the grain-
boundary phases. The structural or crystal-orientation
mismatch between the Nd2Fe14B main phase and other
phases will generate local strain near the interfaces of
different phases or grains. It is possible that such local
strain results in regions of reduced anisotropy as nucleation
sites for reversal domains.
For the theoretical study of strain effects in Nd-Fe-B

magnets, by using the phenomenological theory regarding
magnetoelastic anisotropy [19], Hrkac and co-workers
[9,11–14] and Kubo et al. [10] used molecular dynamics
(MD) to determine the strain-induced anisotropy constant
(Kme). However, depending on the interatomic potential
used in MD, the value of the calculated Kme can differ by
1 order of magnitude. For example, based on a pairwise-
interaction model for Nd2Fe14B, Hrkac and co-workers
considered various crystal structures and crystal orienta-
tions of Nd and Nd oxides and evaluated maximum values
of Kme ∼ −10 to −4000 MJ=m3 in single atoms (the
average Kme for all atoms is approximately −1 to
−10 MJ=m3) in a local region of about 2 nm [9,11,12].
By contrast, Kubo et al. [10] developed an alternative
angular-dependent potential model for Nd2Fe14B and
estimated Kme as on the order of −0.1 MJ=m3 within a
roughly 2-nm region. However, no experimental results
have directly verified this 2-nm local region with extremely
reduced magnetocrystalline anisotropy. In fact, early
experiments showed that the homogeneous thermal strain
present at the boundaries of Nd2Fe14B grains has only a
small influence on the coercivity [19]. More recently,
Murakami and co-workers [20,21] directly measured the
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strain distribution around different interfaces in sintered
Nd-Fe-B magnets. They demonstrated that the region with
a strain of εc ∼�1% extends over several tens of nano-
meters (not the theoretical prediction of approximately
2 nm confined to a local region) away from the interface.
Similar to the early experiments [19], they also speculated
that the interfacial strains have limited influence on the
coercivity. One plausible reason for the inconsistence
between simulations and experiments is the experimental
resolution limitations; i.e., presently, it is difficult to
measure the strain within about a 2-nm-wide local region
in these experiments [20]. Therefore, in terms of the
inconsistence not only between previous MD simulations
themselves but also between the simulations and exper-
imental measurements up to now, in the modeling aspect, it
is required that this issue be more precisely investigated at a
quantitative or multiscale level.
In this work, we perform a combined first-principles and

micromagnetic study on Nd-Fe-B magnets to demonstrate a
multiscale simulation framework for elucidating the strain
effects on Nd-Fe-B magnets and to clarify what kind(s) of
local strain can significantly reduce the coercivity. Previous
first-principles calculations have provided insights into the
magnetic moments and the magnetocrystalline anisotropy
based on either the crystal field of Nd ions [22–27] or the
total energy difference [28,29]. Specifically, Suzuki et al.
[23] explored the crystal-field parameter of Nd ions in the
case of changing the length of the a and c axes. Asali et al.
[30] showed the dependence of magnetic anisotropy on a
c=a ratio of X2Fe14B (X ¼ Y, Pr, Dy), and Torbatian et al.
[31] examined triaxial strain effects on the magnetic
anisotropy in Y2Fe14B. However, they did not report results
for Nd2Fe14B. Therefore, strain effects of Nd2Fe14B in
different forms and magnitudes scrutinized from first
principles are still of interest. By using the first-principles
results as inputs, we carry out further micromagnetic
simulations to elucidate the strain effects on the coercivity
of single- and multigrain Nd-Fe-B magnets.

II. METHODOLOGY

The first-principles calculations are carried in the
framework of the projector-augmented-wave formalism
as implemented in the Vienna ab initio simulation package
[32]. The Perdew-Burke-Ernzerhof exchange-correlation
functional in the generalized-gradient approximation is
employed [33]. According to previous work [28], an energy
cutoff of 400 eV and a Monkhorst-Pack k mesh 5 × 5 × 4
are utilized to reach a good convergence. The convergence
criteria for the full structure relaxation at different stress
states and strain levels are set at 10−5 eV and 10−3 eV=Å
for the energies and forces, respectively [28]. To obtain the
magnetocrystalline anisotropy (K), 4f electrons are treated
as valance electrons [28]. Non-self-consistent calculations
with different spin quantization axes are made by including
spin-orbit coupling, starting from self-consistent charge

densities of spin-polarized calculations. In this way, K is
evaluated as the change of such total energies when the
magnetization is along different axes, i.e.,

K ¼
� ½max ðEa; EbÞ − Ec�=V ðEa > Ec and Eb > EcÞ
½min ðEa; EbÞ − Ec�=V ðEa < Ec or Eb < EcÞ ;

ð1Þ
in which V is the volume of the relaxed unit cell. Ea, Eb,
and Ec are the total energies when the magnetization is
parallel to the a, b, and c axes, respectively. A positive K
indicates easy axis along the c axis, while a negative K
indicates an easy a-b plane.
Using K and Ms (saturation magnetization) obtained

from first-principles calculations as functions of stress
states and strain levels, micromagnetic simulations are
carried out with the 3D National Institute of Standards
and Technology OOMMF code [34] for solving the Landau-
Lifshitz-Gilbert equation [35–37]. Single- and multigrain
Nd-Fe-B magnets are discretized by cubic meshes with a
size of 1 nm. For the single grain, prisms with different
sectional geometry are considered. For modeling the multi-
grain, we use the scanning-electron-microscopy (SEM)
image of a sintered Nd-Fe-B magnet from previous experi-
ments [20]. The exchange constant is set at 12.5 pJ=m [38].
Hysteresis curves are calculated by setting the initial
magnetization along a positive c axis and the external
field along a negative c axis.

III. RESULTS AND DISCUSSION

A. First-principles calculations of strained Nd2Fe14B

Figures 1 and 2 present the first-principles results of K
and Ms under various stress states and strain levels up to
�7%. Bulk-level homogeneous strain in the abovemen-
tioned range in a real Nd2Fe14B magnet is not realistic.
However, there are several plausible sources of the very
large local strain, such as lattice or crystal orientation
mismatch between Nd2Fe14B grains and the intergranular
phases, thermal residual stress at triple regions, grain
irregularity for stress concentration, symmetry breaking
at the grain surface or near the interface, etc. In addition
to these possible experimental phenomena, other reasons
for introducing large strain range in this theoretical work
fall under three aspects. First, Hrkac and co-workers
[9,11,12,14] and Kubo et al. [10] adopted MD simulations
and, indeed, predicted a significant change in K that is
caused by the very large local strain within about a 2-nm
narrow interface region. Second, to date, no experimental
data on the strain in this localized region are available. The
question regarding the magnitude of the extremely local-
ized strain near the interface is still open from the
experimental viewpoint. Third, large strain is possible in
the local region. It is well known in mechanics that the
theoretical strength of a material (inversely proportional to
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the square root of the atomic-layer distance) can be 3 orders
higher than the measurable fracture toughness (inversely
proportional to the square root of the microcrack length)
[39]. Therefore, the grain surface layer of 2 nm can sustain
large deformations without fracture. Also, as shown in
previous MD simulations [9–12,14], local atomic arrange-
ments at the grain boundaries or interfaces experience
dramatic change, but they are still stable without fracture.
The locally dramatic change in atomic arrangements can be
considered a large effective strain which is confined to the
vicinity of the interfacial region. Our theoretical calcula-
tions are suggested as a first step to cover such a case in
order to see what would occur there. Based on the above
considerations, we introduce a large strain range (but still
smaller than the strain values predicted by previous MD
simulations) in this work. By inputting the strain-dependent
first-principles results to the micromagnetic model with a
locally strained region of approximately 2 nm, we attempt
to reveal the local-strain effects on the coercivity. This
theoretical work could be considered a plausible first step
towards a more accurate study by combining experimental
local-strain measurement and theoretical calculations of an
interface-containing large supercell with several hundred
atoms. In the stress-free Nd2Fe14B unit cell, our first-
principles calculations show a K value of approximately
5.1 MJ=m3 (about 30.1 meV=unit cell) and anMs value of
approximately 1.525 MA=m. The calculated K agrees well
with the experimental results [40–44], as indicated by the
five horizontal lines in Fig. 1(a). The calculatedMs is about
38.3 μB=formula units (f.u.), which also matches well with
the experimental value of approximately 37.7 μB=f:u: [45]
and other first-principles results [46–48]. The consistence
between our calculations and the experimental results
validates our first-principles study on Nd2Fe14B.
The calculated Ms in Figs. 1 and 2 shows that it is not

remarkably influenced by the stress states and strain levels,
except for the severer triaxial stress state in the lower left-
hand corner of Fig. 2(f). However, the calculated K is
highly dependent on both the stress states and the strain
levels. In the c uniaxial stress state in which only the crystal
axis c of Nd2Fe14B is stressed and other two crystal axes a
and b are stress-free or free to relax, K shows a decreasing
trend as the strain εc is increased, as shown in Fig. 1(a). On
the contrary, Fig. 1(c) indicates that K increases with the
strain εa when an a uniaxial stress is applied. Figure 1(e)
shows that the pure shear in the a-b plane has a negligible
effect on K when the shear strain γa-b is less than 10%.
Only in the extremely sheared case (γa−b > 15%) is K
remarkably reduced. Since the hydrostatic pressure up to
approximately 5.3 GPa induces a tiny shrinkage of the
lattice, it only slightly reduces K, as shown in Fig. 1(g),
which is a special case of Fig. 2(e). For the hydrostatic
pressure in Fig. 1(g), the stress in all three directions is the
same. While, for the triaxial stress state in Fig. 2(e), the
stress along the a (b) axis and the stress along the c axis can

be either equal or not. The maximum hydrostatic pressure
of about 5.3 GPa in Fig. 1(g) corresponds to a strain state of
εa ¼ εb ∼ 1.27% and εc ∼ 1.47%. The results in Fig. 1(g)
are consistent with those in the triaxial stress state shown in
Fig. 2(e). The variation ofK under biaxial and triaxial stress
states is presented in Fig. 2. It is obvious that a negative K
occurs in a much wider strain range in the a-b in-plane
biaxial stress state, as shown in Fig. 2(a). The shrinkage in
the a-b plane can notably reduce K. For example, a-b
biaxial stress states with εa ¼ εb ¼ −3% and −4% reduce
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FIG. 1. First-principles-calculated K and Ms in the stress state
of (a), (b) c uniaxial stress, (c), (d) a uniaxial stress, (e), (f) pure
shear in the a-b plane, and (g), (h) hydrostatic pressure. The inset
lines in (a) correspond to the experimental results of an unstrained
single crystal in the literature [40–44].
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K to approximately 1.4 and about −0.38 MJ=m3, respec-
tively. By contrast, for the a-c biaxial stress state in
Fig. 2(c), the strain range for a negative K is very small.
Only in the case of a negative εa or a large positive εc, K is
reduced. For the a-b-c triaxial stress state in Fig. 2(e), a
negative K appears for a large negative εa ¼ εb. The c
elongation and a-b plane shrinkage reduce K. For example,
K decreases to about 2.1 MJ=m3 in the case of εa ¼ εb ¼
−3% and εc ¼ 3%. The results in Fig. 2(e) agree well with
the previous work by calculating the crystal-field param-
eters of Nd ions [23] and are qualitatively consistent with
the results from MD simulations [9–12].
From the results in Figs. 1(a) and 1(c), one might think

that the shrinkage along a and c has opposite effects on K.
In fact, this is not the case. Owing to the positive Poisson
effect, uniaxial tensile stress along the a (c) axis induces
shrinkage along the c (a) axis. So under the uniaxial stress
state [Figs. 1(a) and 1(c)], the interference between the
strain along the a and c axes makes it difficult to judge the
main influential factor for K. Then we consider the triaxial
stress state in which we can either set strain along the c axis
by forcing zero strains along a and b or set strain in the a-b
plane by forcing zero strains along the c axis, as indicated
by the two dashed lines in Fig. 2(e). For the line QQ0, i.e.,
the case of εa ¼ εb ¼ 0, K does not change so much when
εc is larger than −6%. For the line PP0, i.e., the case of

εc ¼ 0, K gradually changes from approximately
9.7 MJ=m3 to about −4.5 MJ=m3 when εa ¼ εb decreases
from 7% to −7%. These results from lines PP0 and QQ0
indicate that K is insensitive to the deformation along c but
changes, apparently, with the a-b in-plane deformation. In
other words, the shrinkage in the a-b plane should be
responsible for the K reduction. The decrease of K with an
increasing εc in Fig. 1(a) is ascribed to the c elongation-
induced a-b–plane shrinkage through the positive Poisson
effect. This result also explains the results in Fig. 2 that a
negative K always appears in the region with a negative εa
or εb and a positive εc and a-b biaxial stress state allows a
much larger strain range for a negative K.
In order to qualitatively understand the sign change of K,

we analyze the valence charge density. The density map in
the (001) plane of Nd2Fe14B is shown for three typical
cases in Fig. 3. In order to clearly display the charge-
density difference, the legend is scaled down to the range
0.02–0.03e=bohr3. In this way, the charge-density differ-
ence around Nd atomic sites can be easily identified by the
color, as indicated by the dashed circles in Figs. 3(a)–3(c).
It can be found that the charge density at the FeðcÞ sites
exhibits a distorted distribution towards the B sites and
forms an aspherical shape. The charge density at NdðfÞ
sites and NdðgÞ sites is slightly different, but both deviate
from the spherical distribution. The charge density at the B
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sites is extremely anisotropic and is extended towards the
NdðgÞ and FeðcÞ sites [49,50]. Despite these common
features of the charge density, strain can induce some
nontrivial changes. A comparison between Fig. 3(a) with
no strain and Fig. 3(b) with εa ¼ εb ¼ 0 and εc ¼ 4%
reveals only a slight change of the charge distribution
around the Fe(c) and B sites. Since no remarkable change
of the charge distribution around the Nd sites is observed in
Fig. 3(b), the sign ofK remains the same as that in Fig. 3(a).
This finding indicates that deformation along the c axis
without in-plane strain (i.e., εa ¼ εb ¼ 0) does not remark-
ably change K, agreeing well with the above results. By
contrast, if an additional in-plane shrinkage strain
(εa ¼ εb ¼ −4%) is applied, the charge distribution around
Nd sites is notably altered, as shown by the dashed circles
in Fig. 3(c). Moreover, the charge-density distribution
along the lines NdðgÞ → B [Fig. 3(d)] and NdðfÞ →
FeðcÞ [Fig. 3(e)] also indicates an apparent increase of
charge density around Nd when in-plane compressive strain
is applied. Because of the reduction of the distance between
the Nd and Fe/B sites, there is evidence of some degree of
hybridization between the Fe/B atoms and the Nd atoms
[Fig. 3(c)]. Through the hybridization, the 5d electron
cloud of Nd atoms apparently extends towards the Fe/B
atoms. The extension of 5d cloud relocates the 4f electron
cloud perpendicular to the a-b plane in order to avoid the
repulsive force from the horizontally extended 5d electron
cloud [25], thus leading to an easy a-b plane and a negative
K [Fig. 3(g)]. Therefore, one possible explanation is that

the in-plane shrinkage makes the Fe/B atoms much closer
to the Nd atoms and results in a hybridization between
them, which further changes the 5d electron cloud sur-
rounding the 4f electron cloud of Nd atoms and finally
alters the sign of K [25].
It should be noted that several researchers [9–12] have

dealt with the strain-induced K change by using the
phenomenological magnetoelastic coupling energy which
was derived by de Groot and de Kort [19]. They calculated
the strain-induced anisotropy constant (Kme) as a function
of lattice strain and applied Kme to estimating the change of
K by using the elastic constants from isotropic polycrystals.
For a qualitative and order-of-magnitude analysis, we
rewrite the Kme from de Groot and de Kort as Kme ∼ Bε,
in which B denotes the magnetoelastic coefficient and ε the
strain level. By using the parameters given in the literature
[19], our estimation of B is shown to be on the order of
40 MJ=m3. This means that a large strain on the order of
10% can give a K change of only about 4 MJ=m3. For a
negativeK, a strain of more than 12% is required. However,
our first-principles calculations show that a small strain of
around 4% can even reduceK to negative values [Fig. 2(a)].
Hence, our first-principles study indicates a much larger
sensitivity of K to the lattice deformation. The under-
estimation of strain effects by the phenomenological
description could be attributed to the assumption of a
one-ion magnetoelastic Hamiltonian without a two-ion one
because the two-ion magnetoelasticity is also related to the
modification of the two-ion magnetic interactions by the

b b

b
Nd(g)

Nd(g) Nd(f )

Nd(g) Nd(g)

Nd(g)Nd(g)Nd(g)

Fe(c) Fe(c) Fe(c)

Fe(c)
Fe(c)

Fe(c)
f

d
d e

ed

Fe(c) Fe(c) Fe(c)
Fe(c)

Fe(c)Fe(c)

Nd( f ) Nd( f ) Nd( f )

Nd( f )Nd( f )Nd( f )

e
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strains [51]. In our first-principles calculations, however,
both one- and two-ion magnetic interactions and full
electron-lattice coupling are consistently included.

B. Micromagnetic simulations of locally
strained Nd-Fe-B magnets

Previous experiments have demonstrated that homo-
geneous small strain in Nd-Fe-B magnets has negligible
effect on the coercivity [19]. However, previous MD
simulations verified that a large strain is possible in a very
localized region about 2 nm wide near the interface [9–12].
The authors used the atomic displacement near the interface
to calculate the local strain, which is then considered to be
the lattice strain as inputs for the phenomenological
magnetoelastic theory [19] to estimate the K change. In
the micromagnetic simulations here, we also follow a
similar idea discussed in previous studies [9–12,14,52];
i.e., the source of the local strain is not the focus and an
effective lattice strain is assigned to the local region. The
symmetry breaking and the change of chemical environ-
ments near the local region are beyond the scope in this
work, although they can also influence the coercivity.
However, unlike these previous studies, which used phe-
nomenological theory [19], here, we directly take the lattice
strains and stress states associated with the first-principles
calculations to define the locally strained region in Nd-Fe-
B magnets. The local region is set at approximately 2 nm
thick, as demonstrated by the MD simulations [9–12,14].
The parameters K and Ms of the locally strained region
under various strain levels and stress states are taken from
the first-principles results presented above.

1. Single-grain Nd-Fe-B magnets

We first investigate the prism-shaped single grain, which
is covered by a locally strained surface with a thickness
of t. Figure 4(a) displays the grain shape of a hexagonal
prism, with the geometry dimension of h ¼ 200 nm,
d ¼ 300 nm, and t ¼ 2 nm. If we assume that the grain
surface is under the local a-b biaxial stress state, it can be
found that, for the hexagonal prism, the coercivity
decreases from 5.7 to 1.96 T under an a-b biaxial strain
of εa ¼ εb ¼ −5% [Fig. 4(b)]. However, the coercivity
increases by only 0.5 T in the case of εa ¼ εb ¼ 5%. This
indicates that the coercivity is more sensitive to the local
region with a-b–plane shrinkage and a negative K.
We further study the effects of the grain shape of the

locally strained single grain. The motivation is to explore
the possible role of the place where strain or stress appears
and the associated micromagnetic mechanism. The grain-
shape effects have recently been investigated for achieving
high coercivity [53–56]. Here, we consider four types of
prism grains: those with triangular, rectangular, hexagonal,
and circular sections. The distribution of the c component
of the unit magnetization vector (mc) at the remanent state
(μ0Hex ¼ 0) is presented in Fig. 4(c). It can be seen that the

magnetization near the corners or edges has already rotated
out of the easy direction even at the remanent state. More
precisely, the minimum mc values in Fig. 4(c) are found
to decrease in the following order: circular prism >
hexagonal prism > square prism > triangular prism. This
means that the local reversal occurs fastest in the triangular
prism and slowest in the circular prism. Such a local
reversal is due to the inhomogeneous stray field near the
corners or edges in the nonellipsoidal grains [53,57].
By the local reversal, the inhomogeneous magnetization
can suppress magnetic surface charges and decrease the
stray-field energy with respect to the homogeneous mag-
netic state. The different local reversal behavior could
result in distinct coercivity. We find in Fig. 4(d) that, at the
same local stress states and strain levels, the coercivity
is shown to increase in this order: triangular prism<
squareprism<hexagonal prism<circular prism. For exam-
ple, in the case of a local a-b biaxial stress state with
εa ¼ εb ¼ −4%, the coercivity is found to significantly
increase from 1.58 T in the triangular prism to 2.3 T in the
circular prism. These results indicate that, in addition to the
local stress states and the strain levels themselves, where
the locally strained region appears (e.g., grain shape,
surface irregularity, and edge curvature) also plays an
important role in determining the coercivity.
By using the hexagonal prism in Fig. 4(a), we carry out a

detailed study on the sensitivity of the coercivity to the
local stress states and strain levels. The coercivity change
distribution in Fig. 5 is similar to the K distribution in
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FIG. 4. (a) Schematic of a single-grain Nd-Fe-B magnet with a
hexagonal section and with its surface covered by a locally
strained region. (b) Local-strain-dependent coercivity for the
grain in (a) under the local a-b biaxial stress state. (c) mc
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Figs. 1 and 2. We find that, in all of the cases, the coercivity
enhancement is limited to about 10%, while the coercivity
decrease can be about as high as 80%. Again, the
coercivity decrease is found to be more sensitive to the
local strain than the coercivity enhancement. Figure 5(a)
shows that the uniaxial stress states along the c and a axes
induce maximum coercivity decreases of approximately
20% and about 50%, respectively. The local a-b biaxial
stress state allows a much larger strain range for a coercivity
decrease of about 60%, as shown in Fig. 5(b). By contrast,
the local a-c biaxial and a-b-c triaxial stress states have a
much smaller strain range for the coercivity decrease, as
shown in Figs. 5(c) and 5(d).

2. Multigrain Nd-Fe-B magnets

Micromagnetic simulations on the multigrain are further
performed. The multigrain model in Fig. 6(a) is built by

using the SEM image of a sintered Nd-Fe-B magnet [20].
The size m ¼ 280 nm and n ¼ 300 nm is estimated from
the SEM image. Around the triple junction, the region with
a strain of εc ¼ �1% is extended over several tens of
nanometers away from the interface, as measured in
previous experimental work [20]. An additional locally
strained region with a 2-nm width is assumed in the
interface, as was done in previous work [9,11,12].
Owing to the small size of the model, the simulated
coercivity without local strain is about as high as 5.84 T,
as shown in Fig. 7. The effect of the strain εc ¼ �1%
extending over several tens of nanometers on the coercivity
is negligible, further confirming a statement in a previous
experimental work [20]. It can be seen from Fig. 7 that, in
the case of local uniaxial stress states, the strain has little
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influence on the coercivity. However, the biaxial and
triaxial stress states remarkably reduce the coercivity. An
a-b biaxial stress state with εa ¼ εb ¼ −4% and −3%
decreases the coercivity from 5.84 to 1.98 and 2.8 T or by
about 66% and 52%, respectively. This means that a
moderate strain level in a suitable local stress state can
reduce the coercivity in the multigrain Nd-Fe-B magnets by
more than 3 T. The magnetic reversal process in Fig. 6(b)
indicates several apparent nucleation sites in the locally
strained region. Then the reversal domain rapidly expands
and the whole grain completely reverses instantly.
By using the first-principles results in Figs. 1 and 2, we

calculate the coercivity of the multigrain as functions of the
local stress states and strain levels, as shown in Fig. 7. It is
found that the local uniaxial stress states almost do not affect
the coercivity. Only the strain values marked in Fig. 7 and
their associated stress states can reduce the coercivity by
more than 1 T. Obviously, the local a-b biaxial stress state
possesses a higher possibility to result in more reduction in
the coercivity. In the case of local a-b biaxial and a-b-c
triaxial stress in Fig. 7, though 5% strain induces a larger
negative value of K than 4% strain, the coercivity is slightly
increased. This is due to the fact that a local negative K
favors the formation of an initial 90° domain wall between
the locally strained region and the strain-free region, but a
more negative K increases the field for the subsequent
formation of a 180° domain wall. This result also indicates
that a larger negative value of local K inducing more
reduction in the coercivity is not always correct.
Owing to the small mesh size (1 nm here) determined by

the physical length in micromagnetic simulations, the
sample size of the modeled multigrain is often much smaller
than that of the real magnets. In order to present an example
for demonstrating the size effect, we increase the multigrain
size here by extending l [Fig. 6(a)] to 1.4 μm, as shown in the

inset of Fig. 8. Such an extension results in amesh number of
approximately 0.12 × 109, which is extremely computation-
ally expensive. From the reversal curves in Fig. 8, it can be
seen that in local a-b biaxial stress states with either εa ¼
εb ¼ −4% or εa ¼ εb ¼ −3%, the increase of l from 280 nm
to 1.4 μm makes the coercivity decrease by about 0.3 T.
The coercivity reduction can be qualitatively understood
from the demagnetization effect. The l extension favors a
reduction and an increase of the demagnetization factor
along the l and c directions, respectively. The effect of l
extension increases the in-plane shape anisotropy and exerts
additional torque to make magnetization deviate from the c
axis, thus resulting in premature nucleation and reduced
coercivity.
Finally, it is worth mentioning that the single-grain

results in Fig. 5(d) inspire a strategy of increasing the
coercivity by tuning the shape or geometry of the local-
strain region in the multigrains. By this inspiration, we then
change the model in Fig. 6(a) into an ideal model whose
triple region is set as a circular prism, as shown in the inset
of Fig. 9, in order to study the effect of where the local
strain appears. In contrast to Fig. 6(a), in which the local
strain is in the triangular edge of the triple region, the model
in Fig. 9 puts the local strain in the circular edge. We can
find from Fig. 9 that the coercivity is obviously enhanced if
a circular prism is used to represent the triple region. This is
consistent with the result from the single-grain study and
indicates the shape of the triple region as an influential
factor for the coercivity. Smoothing the edge and removing
the sharp angle of the triple region are favorable for
coercivity enhancement. It should be noted that the
circularly shaped triple region presented in the simulation
is an ideal case, but it provides practical information
towards coercivity enhancement. In realistic conditions,
though achieving a perfectly circular triple region is
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difficult, reducing the sharp angle of the triple regions or
making them as smooth as possible in Nd-Fe-B magnets is
possible by using gas-atomized powders, controlled grain-
boundary diffusion, or additive manufacturing.

IV. CONCLUSIONS

Strain effects in Nd-Fe-B magnets are examined by a
combined first-principles and micromagnetic study. In this
way, we use the first-principles results on the stress states
and strain levels dependent on K and Ms as the input for
micromagnetic simulations of the coercivity in single- and
multigrain Nd-Fe-B magnets. The main conclusions are
summarized in the following:
(1) In the Nd2Fe14B phase, the stress states and strain

levels have negligible effects on Ms but significant
effects on K. K is sensitive to the a-b in-plane
deformation rather than the c-axis deformation. The
a-b–plane shrinkage is responsible for the K reduc-
tion. The biaxial and triaxial stress states have a
greater impact on K than other stress states. A
negative K occurs in a much wider strain range in
the a-b biaxial stress state.

(2) K is shown to be more sensitive to the lattice
deformation by the first-principles study than by
the previous phenomenological model [19], which
considers only one-ion magnetoelastic Hamiltonian
and underestimates the strain effects. An a-b biaxial
stress state with εa ¼ εb ¼ −3% and −4% reduces
K to about 1.4 and approximately −0.38 MJ=m3,
respectively.

(3) In Nd-Fe-B magnets, the local a-b biaxial stress state
in the locally strained region is more likely to induce
a large loss of coercivity. A coercivity decrease by
60% or by 3 to 4 T can be induced by a 3% to 4%
local strain in a 2-nm-wide region near the interface
around the grain boundaries and triple junctions.

(4) In addition to the local stress states and the strain
levels themselves, the shape of the interfaces and the
intergranular phases also makes a difference.
Smoothing the edge and reducing the sharp angle
of the triple regions in Nd-Fe-B magnets would be
favorable for a coercivity enhancement.

It is anticipated that our multiscale results here based on
first-principles calculations and micromagnetic simulations
will provide quantitative information regarding that what
kind of local stress state and how large a local strain can
induce a significant decrease in coercivity. The results will
also be applied to the high-resolution experimental research
of the local-strain measurement in Nd-Fe-B permanent
magnets.
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