
Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

Journal of the Mechanics and Physics of Solids 70 (2014) 62–70
http://d
0022-50

n Corr
E-m
journal homepage: www.elsevier.com/locate/jmps
Grain boundaries in hybrid two-dimensional materials

Zhuhua Zhang, Yang Yang, Boris I. Yakobson n

Department of Materials Science and Nanoengineering, Department of Chemistry, and the Smalley Institute for Nanoscale Science and
Technology, Rice University, Houston, TX 77005, United States
a r t i c l e i n f o

Article history:
Received 7 January 2014
Received in revised form
14 April 2014
Accepted 12 May 2014
Available online 21 May 2014

Keywords:
Grain boundary
Two dimensional material
Hybrid material
Dislocations
First-principle calculations
x.doi.org/10.1016/j.jmps.2014.05.009
96/& 2014 Elsevier Ltd. All rights reserved.

esponding author.
ail address: biy@rice.edu (B.I. Yakobson).
a b s t r a c t

In two-dimensional (2D) materials, bisector grain boundaries (GBs) are energetically
favorable as they allow perfect match of neighbor grains. We demonstrate here a
contrasting behavior for GBs in hybrid 2D materials, which tend to be non-bisector and
obey a universal law to optimally match the heterogeneous grains: the ratio of cosines of
the rotation angles of two neighbor grains equals the ratio of constituent's lattice
parameters, reminiscent of Snell's law for light refraction. Details of the optimal GB
structures are further formulated in terms of tilt angle, lattice mismatch strain and
deviation angle from the bisector line, in good agreement with comprehensive numerical
analyses. The ground state structures of the GBs manifest as a series of laterally misaligned
bisector segments, which are verified by intensive first-principle calculations. Our findings
not only provide a general guidance for exploring GBs in various hybrid 2D materials but
also serve as an important stepping stone for understanding mechanical and electronic
behaviors in these 2D nanoscale patchworks.

& 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In the past few years, two-dimensional (2D) materials have undergone a flurry of research activities, leading the science
and technology for low-dimensional materials into a 2D age. Among various 2D materials synthesized thus far, graphene
(Novoselov et al., 2005; Zhang et al., 2005; Castro Neto et al., 2009) and single-layered hexagonal boron nitride (h-BN)
(Geim and Novoselov, 2007). have attracted considerable research attention, not only owing to similar hexagonal
honeycomb lattices but also because of their supreme mechanical properties (Lee et al., 2008; Chang and Gao, 2003;
Chang et al., 2006). However, graphene is a zero-gap semi-metal, while the h-BN monolayer is electrically insulating with a
wide band gap of �5.8 eV (Nag et al., 2010; Golberg et al., 2010; Zhang and Guo, 2008; Jin et al., 2009; Jiang and Guo, 2011).
The distinct properties of the two hexagonal isologues have stimulated great interests in fabricating hybridized atomic
layers composed of graphene and BN domains—a new 2D BNC material with properties complementary to those of its
constituents (Ci et al., 2010; Sutter et al., 2012; Liu et al., 2011, 2013; Gao et al., 2013). Of most interest is the fact that varying
the ratio of composition could endow the hybrid BNC sheet with tunable band gap on-demand, ranging from 0 eV to 5.8 eV
(da Rocha Martins and Chacham, 2010; Ramasubramaniam and Naveh, 2011; Bhowmick et al., 2011; Jung et al., 2012;
Muchharla et al., 2013; Ding et al., 2009; Lu et al., 2011; Lu et al., 2010). Moreover, having BN domains patched in otherwise
perfect graphene structures leads to appearance of edge states localized at the BN/graphene interfaces, enabling the
advent of spin-polarization (Ramasubramaniam and Naveh, 2011; Lu et al., 2010) and even possible half-metallicity
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(Dutta et al., 2009; Liu et al., 2011). All these colorful properties, however, are closely correlated with the interface between
the graphene and BN domains, which is at the center of the study of hybrid 2D materials (Ajayan and Yakobson, 2011).
Having a clear picture towards understanding the hybrid interface will not only provide essential basis for further study of
fundamental physics and potential applications but also help understand the growth mechanism of the nanoscale
patchworks. Unfortunately, limited by related techniques in preparation and characterization, experimental images of
atomically sharp BNC interfaces remain rather scarce thus far.

Prior to experimental observation, insightful theoretical study on the hybrid interfaces is appealing. All previous
theoretical works on the 2D BNC sheets are based on epitaxial interfaces, that is the BN and graphene domains are stitched
in a way that the honeycomb lattice can be continuous across the interfaces, mostly manifesting as zigzag- and armchair-
shaped interfaces (Bhowmick et al., 2011; Jung et al., 2012; Dutta et al., 2009; Liu et al., 2011). The epitaxial interfaces,
however, may be far from the real situation in experiments, in view of the following two aspects. First, epitaxial interfaces
impose significant in-plane strains on all the domains due to considerable lattice mismatch between graphene and h-BN.
As the in-plane strain is non-decaying, the epitaxial interfaces rapidly raise the system energy with increasing domain sizes,
rendering them unfavorable choice. Second, in real process, graphene and BN domains can be nucleated at different sites on
substrates (Liu et al., 2013). If the domains are misoriented with each other, their growth and coalescence lead to formation
of dislocations and grain boundaries (GBs), which are found to be ubiquitous in 2D materials. While GBs have been
extensively studied in graphene and h-BN (Kim et al., 2011; Huang et al., 2011; Yu et al., 2011; Liu and Yakobson, 2010;
Yazyev and Louie, 2010; Liu et al., 2012; Gibb et al., 2013; Wei et al., 2012; Wu and Wei, 2013; An et al., 2011), they have
never been addressed in related hybrid materials. Several fundamental questions are raised naturally: is it possible to lift the
Fig. 1. Preferred grain boundaries (GB) in 2D materials. (a) Schematic model of a bisector GB in a homogenous 2D material, with the left and right domains
symmetrically rotated by θ. The tilt angle of GB is θT¼2θ. (b) Schematic model of a GB in a hybrid martial perfectly matching domains 1 and 2, for which
only lattice rows are shown. Given a rotation angle θ for the domain 2, there are two alternative rotation angles θþΔθ and �θ�Δθ for the domain 1, as
shown by black solid and dotted lines. a1 and a2 are the lattice constants of the domains 1 and 2, respectively. Applying the scheme shown in (b) into the
GB in 2D BNC sheet at tilt angles of (c) 2θþΔθ and (d) Δθ. The repeat vectors, denoted by thick solid lines with arrow, are (n1,m1) for the domain 1 and (n2,
m2) for the domain 2, both having a length L. Dotted lines illustrate how the repeat vectors are rotated from the armchair direction. C, B and N are
distinguished in gray, green and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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lattice mismatch by regulating the GBs in hybrid 2D materials? If that were the case, what physical law governs this
regulation and what atomic organizations emerge with the GBs?

In homogenous materials, GBs are energetically more favorable when bisecting the angle between the crystallographic
orientations of the two domains (see Fig. 1a) (Liu and Yakobson, 2010), allowing the domains to get rid of in-plane strain.
Bisector GBs for hybrid 2D materials will cause additional strain energy, attributed to the lattice mismatch. Instead, the GBs
have to deviate from the bisector line for realizing the optimal match of grains. However, setting up a general law to describe
the optimally matched GBs in hybrid 2D materials encounters difficulties in combinatorics among the lattice orientations,
mismatch and periodicity. Toward solving this issue, an inspiration comes from a well-known physical phenomenon
associated with interfaces between two media, through which a ray of light undergoes a change in its wave length as well as
its refraction angle from incidence. A simple formula, known as Snell's law, describes the relationship among the incidence
and refraction angles and wave lengths of light. If we regard the incidence and refraction angles as the rotation angles of
domains and the light wave length as the “lattice constants”, a similar law for lattices at GBs in hybrid 2D materials can be
envisioned. Indeed, here, our comprehensive analyses reveal that two heterogeneous domains in hybrid 2D materials can be
optimally matched with no in-plane strain once the ratio of cosines of the rotation angles of the two domains is equivalent
to the ratio of their lattice constants. Based on this law, the details of GB structures are determined via optimal combination
of misorientation angle, lattice mismatch and periodic length of GBs and energetically confirmed by first-principle
calculations. Our study represents the first effort to address the GBs in hybrid 2D materials and may shed light on
understanding their mechanical behaviors and functions.

2. Analytical results

For generality of our analyses, we consider a hybrid 2D material composed of domain 1 with lattice constant a1 and
domain 2 with lattice constant a2 (Fig. 1b). The corresponding lattice mismatch is ε¼(a2�a1)/a1 (a24a1). The rotation angle
between the crystallographic orientation and the normal of the boundary line is θþΔθ for the domain 1, and θ for the
domain 2. The atomic arrangement around the GB not only depends on its tilt angle θT¼2θþΔθ, but also on Δθ and ε. Since
direct consideration of numerous possibilities cannot be afforded, a preliminary analysis is useful for screening. A
prerequisite for the optimal match is that all the lattice rows in the hybrid 2D material should continuously cross the GB
(Fig. 1c); otherwise additional dislocations or imperfections must be included to accommodate the lattice rows disconnected
at the GB and raise the system energy. GBs satisfying this condition will be in priority and the main choice for detailed
analyses. Nevertheless, other GBs out of this condition, if formed in the course of growth, can be kinetically stabilized and
encountered in observations as well. With these provisions, we can derive the relation between rotation angles and ε. Fig. 1b
shows a simplified model of two stitched domains, with only lattice rows being presented. Perfect match of the lattice rows
across the GB requires that the projections of two domains' lattice constants onto the GB line are equal, so a1/cos(θþΔθ)¼
a2/cos(θ), further expressed as

cos θ

cos ðθþΔθÞ ¼ 1þε: ð1Þ

Eq. (1) just resembles the equation of Snell's law for describing light refraction. Solving Eq. (1) yields two nonequivalent
solutions: θþΔθ versus θ and �θ�Δθ versus θ, as shown by the solid and dashed lines in the domain 1, respectively
(Fig. 1b). The corresponding GBs have tilt angles θT¼2θþΔθ and Δθ, respectively. The two types of GBs can be inter-
converted by a 1801 flip of the domain 1 or 2 around the in-plane normal of the GB (Fig. 1c and d). As the geometrical
analyses of the two groups of GBs are essentially the same, we focus on the GBs corresponding to the first solution. To
further formulate the interdependence of structural parameters in the GBs, we take θ¼θT/2�Δθ/2 and θþΔθ¼θT/2þΔθ/2;
then Eq. (1) can be rewritten as cos(θT/2�Δθ/2)¼(1þε)cos(θT/2þΔθ/2), which results in

tan
Δθ
2

¼ ε

ð2þεÞ tan ðθT=2Þ
: ð2Þ

Since Δθ/2 is quite small, Eq. (2) can be further simplified as

Δθ¼ ε

ð1þε=2Þ tan ðθT=2Þ
: ð3Þ

Eq. (3) presents proportionality between Δθ and the lattice mismatch ε, indicating that the optimal GB with larger ε will
be deviated more from the bisector line. In contrast, Δθ increases with decreasing tilt angle θT. There is an extreme case at
θT¼0, at which Δθ has no solution. In this case, the GB becomes an epitaxial interface, but dislocations oriented
perpendicular to the GB line must be embedded to lift the lattice mismatch. The structure of GBs at this extreme will be
a topic for future study and in this study we focus on common tilt GBs.

3. Numerical results

We then numerically analyze the GBs in hybrid 2D materials with specific lattice mismatch. Fig. 1c presents the graphene
and BN domains that are misoriented with each other. The GBs in-between the domains break the lattice periodicity
intrinsic to the pristine materials. The periodicities of the domains 1 and 2 along GBs now are defined by repeat vectors



Z. Zhang et al. / J. Mech. Phys. Solids 70 (2014) 62–70 65
(n1,m1) and (n2,m2), respectively, which satisfy commensurability condition for reaching perfect match. This is similar to the
concept of coincidence site lattice for describing GBs in conventional bulk materials (Ranganathan, 1996). For ease of
discussion, the GB constructed by repeat vectors (n1,m1) and (n2,m2) is tagged as (n1,m1)|(n2,m2). In Fig. 1c, by applying an
elementary law of sines to the triangle in the domain 1, we have

m1a1
sin ð30o�θ�ΔθÞ ¼

n1a1
sin ð30oþθþΔθÞ ¼

L
sin 120o: ð4Þ

On the other side, from the triangle in the domain 2, we have

m2a2
sin ð30o�θÞ ¼

n2a2
sin ð30oþθÞ ¼

L
sin 120o; ð5Þ

where L is the length of repeat vectors in both the domains. We thus have the following relation:

n2 ¼
sin ð30oþθÞ

sin ð30oþθþΔθÞð1þεÞn1;

m2 ¼
sin ð30o�θÞ

sin ð30o�θ�ΔθÞð1þεÞm1: ð6Þ

We actually cannot directly get solution from Eq. (6), because n1, n2, m1 and m2 are discrete integers and the lengths of
two repeat vectors are unlikely to coincide. Numerical analyses thus become necessary to obtain the optimal match.
According to our preceding preliminary analysis, the repeat vectors must satisfy n1þm1¼n2þm2, which make sure that all
the lattice rows can be connected when crossing the GB (see Fig. 1c and d). Given a repeat vector of one domain, Eq. (6)
enables us to approximately get the repeat vector of another domain and to build up the (n1,m1)|(n2,m2) GB. For the hybrid
BNC sheet with ε¼1.8%, we find that a given (n,m) of the domain 2 is matched most closely by (nþ1,m�1) of the domain 1,
forming a match regime of (nþ1,m�1)|(n,m). However, the discrete character of (nþ1,m�1) and (n,m) results in a residual
strain εR¼ |L2�L1|/L1 for the GB, where L1 and L2 are lengths of the repeat vectors in the domains 1 and 2, respectively. At a
given rotation angle θ of the domain 2, the residual strain changes with varying periodic length L, taken as (L1þL2)/2, and
should disappear in the optimal GB with an optimal L. To further clarify this point, we show in Fig. 2a (a 2D plot is shown in
Fig. S1) the residual strain εR as functions of L for four groups of BNC GBs with differently fixed θ. With varying L, εR can be
Fig. 2. Structural parameters of the optimal GBs in hybrid 2D materials. (a) Residual strain εR in GBs with differently fixed θ in the 2D BNC sheet as
functions of the periodic length L of GB; all the GBs follow the (nþ1,m�1)|(n,m) regime. (b) L and (c) Δθ as functions of tilt angle θT in the optimal GBs. The
results with filled symbols are for GBs constructed by a regime of (nþ1,m�1)|(n,m), while those with red hollow circles at ε¼5% are for GBs by a regime of
(nþ1,m�2)|(n,m), in which both grains are tilted from the zigzag direction. Symbols show numerical results while dark gray 3D plots are analytical
solutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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minimized to nearly zero in all the curves; the optimal L for the minimum εR decreases with decreasing θ. The corresponding
optimal GBs in the 2D BNC sheet turn out to be (4,2)|(3,3), (11,4)|(10,5), (19,3)|(18,4) and (29,�1)|(28,0) at θ¼301, 201, 101,
and 01, respectively. Similar numerical analyses can be applied to determine the optimal GBs at other tilt angles as well as at
ε¼3% and 5%. The interdependence among Δθ, tilt angle θT, and periodic length L in the numerically derived optimal GBs is
shown by symbols in Fig. 2b and c. The optimal GB with a smaller θT favors a larger Δθ, in good agreement with the
analytical results from Eq. (3) (shown by 3D dark gray plot in Fig. 2c). In contrast, the periodic length L increases with
increasing tilt angle θT for all examined ε (Fig. 2b). By a series of geometrical derivation, we also obtain an analytical
relationship between L and θT as Lε¼a2sin(θT/2)/cos(Δθ/2) (see Fig. S2 in SI). Since Δθ/2 is very small and cos(Δθ/2)E1, we
have

L� a2 sin ðθT=2Þ=ε: ð7Þ
Again, the analytical results by Eq. (7) are in excellent agreement with the numerical results shown by dark gray 3D plot

in Fig. 2b.
Interestingly, when the length of repeat vector is below 2 nm, the GB switches from the (nþ1,m�1)|(n,m) regime to

(n�1,mþ2)|(n,m) regime at ε¼5%, as shown by hollow symbols in Fig. 2b and c, following an increase of L. The (n�1,mþ2)|
(n,m) GBs are rotated from zigzag orientation and their tilt angles are thus reversed with respect to 601 (see Fig. S3 in SI). The
switch of match regime can be understood based on Eqs. (3) and (7). As the lattice mismatch ε increases and L declines, Δθ
increases sharply and cannot be afforded by the (nþ1,m�1)|(n,m) regime, thus resulting in a large residual strain εR at all
times. Switching to (n�1,mþ2)|(n,m) just accommodates the increased Δθ, and then εR can be minimized to nearly zero
again with increasing L, which now is expressed as √3a2sin(θT/2)/ε. Note that ε¼3% corresponds to a hybrid graphene/
graphane sheet (Balog et al., 2010), but ε¼5% lacks correspondence to real materials, shown here only for information. All
the analyses can be applied for the (m1,n1)|(n2,m2) GBs corresponding to the second solution of Eq. (1), yielding similar
results.

4. Structural details of grain boundaries and first-principle verification

The above analyses have established the framework of optimal GBs in hybrid 2D materials. Now we turn to explore the
details of the GB structures. It has been established that GBs in graphene are strings of pentagon–heptagon (5|7) edge
dislocations (Huang et al., 2011; Liu and Yakobson, 2010; Gibb et al., 2013). The identical edge dislocations energetically
favor a vertical alignment to form a bisector GB. Nevertheless, the optimal GB in hybrid 2D materials is deviated by Δθ/2
from the corresponding bisector line. As Δθ/2 is quite small (see Fig. 2c), the dislocations will locally form bisector segments
and kinks must be embedded to accommodate the deviation. This renders the optimal GB as a kinked line comprised of a
series of misaligned bisector segments, which locally have a tilt angle of θTþΔθ. For low-angle GB, the dislocation density in
each bisector segment is 2sin(θT/2þΔθ/2) (Hirth and Lothe, 1982). With these guidelines, we show in Fig. 3 the atomic
structures for several typical GBs in the BNC sheet. Each bisector segment just stands for a repeat unit of the GBs and
increases in length with increasing θT, following an increase in dislocation density, in line with our analytical results.
According to Eqs. (2) and (7), the lateral deviation by the kink is Lsin(Δθ/2)¼a2/(2þε), the minimum dislocation can laterally
shift from a bisector GB (see Fig. 3).

To verify the ground states of the GB structures, we perform density functional theory calculations as implemented in
VASP code (Kresse and Hafner, 1994; Kresse and Furthmüller, 1996), using the projector-augmented wave method for the
core region and spin-polarized density functional theory (DFT) based on the generalized gradient approximation (GGA) of
Perdew–Burke–Ernzerhof with a plane-wave kinetic energy cutoff of 400 eV. A vacuum layer of 16 Å isolates neighboring
periodic images and the Brillouin zone is sampled by 6–12 k-points, depending on the supercell size. The GB energies were
calculated using an extended model with periodic boundary conditions containing a pair of complementary GBs, while the
relative formation energies of GBs associated with dislocation gliding and pseudo-climbing were examined based on a
nanoribbon model (6 nm in width, edge passivated by hydrogen) containing a single GB. The distance between two
complementary GBs is 4 nm, while the supercell size along the GB is defined by the repeat vectors. All atomic positions are
relaxed using conjugate-gradient techniques until the force on each atom is less than 0.01 eV/Å. We focus on the 2D BNC
sheets in view of the extensive experimental interests. As shown above, the length of repeat vectors increases with
increasing tilt of the optimal GB, so we can only afford the computations on GBs with small tilt angles. First, we investigate
the preferred chemical stoichiometry of dislocations composed of B, N and C atoms. The atomic stoichiometry of
dislocations is adjusted by transversely shifting the interface through the dislocations, so as to vary the composition of
dislocations from full BN to full carbon. We define a distance d between the interface and the dislocation center to
characterize the composition variation (see inset in Fig. 4b). Taking the (4,2)|(3,3) GB as an example, we compare the
formation energies of the GBs with changing chemical compositions. The formation energy is defined as

Ef ¼ Ex�E0þNBNμBN�NCμBN ð8Þ
where Ex and E0 are the energies of examined and referenced structures (the reference structure is set as the one with
minimum Ef), respectively, μBN and μC are the chemical potentials of BN atomic pair and C atom, NBN is the difference of BN
pairs between the examined and referenced structures and NC is the corresponding difference of C atoms. μBN and μC are
chosen as the energies of BN pair and C atom in the single-layered h-BN sheet and graphene, respectively. The results show
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that the formation energies of both the B-rich and N-rich GBs show a sharp minimum with varying chemical compositions
(Fig. 4a). At the minimum, the interface in B-rich GB shifts by �0.2 nm toward the graphene side while that in N-rich GB
shifts in an opposite way (see insets in Fig. 4a). The two types of most favorable GBs have a common feature in that the
dislocations are composed of N-rich pentagon and B-rich heptagon. This is because the radius of N atom is smaller than that
of C atom and could alleviate compressive stress in pentagon while the larger B atom releases the tensile stress in heptagon.
Meanwhile, we find that the length of interface between BN and graphene domains should be minimized for reaching an
optimal GB; in this sense, any separation of B and N atoms from the BN domain or separation of C atoms from the graphene
domain leads to much higher formation energy (see Fig. S4). The revealed optimal stoichiometries of dislocations are used in
all the following calculations. Second, we examine the interaction between the GB and the epitaxial interface where the
graphene and BN domains join together. For this purpose, we shift the (4,2)|(3,3) GB relative to the epitaxial interface by
gliding all dislocations and find that the total energy sharply increases as the dislocations become farther from the interface
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(Fig. 4b). Therefore, the dislocations and interface are attractively coupled and tend to be superimposed. The underlying
reason is that the dislocations can have the stress field relieved to a higher extent when located at the interface, where the
bonds are weaker than those in bulk lattices. Third, we perturb the (7,3)|(6,4) GB by gliding a dislocation near the kink, and
find the formation energy of GB is increased at least by 1.36 eV/supercell (Fig. S5a); pseudo-climbing the dislocation in the
“5” direction by removal of C2 or a BN dimer also causes energy increase up to 1.71 eV (see Fig. S5b). Finally, we considered
several wiggly-shaped (7,3)|(6,4) GBs, which are found to be much less stable than the optimal GBs due to the increase of
both the amount of dislocations and the length of BN–C interface (not shown).

Can the optimal GBs be more favorable than commonly supposed bisector structures? Fig. 5 summarizes the energies for
a set of (nþ1,m�1)|(n,m) and (m�1, nþ1)|(n,m) optimal GBs in the 2D BNC sheet, together with (n,m)|(n,m) and (nþ1,
m�1)|(nþ1,m�1) bisector GBs with tilts from 01 to 301. Both types of optimal GBs are distinctly more favorable than the
bisector counterparts, by up to 0.3 eV/nm within our limited model size. The optimal GBs are also featured by the
suppressed warping with amplitude of merely �0.2 Å in both the graphene and BN domains (Fig. 5, left inset), signifying
that the in-plane strains have been eliminated and the GB energy is dominated by the 5|7 dislocations, i.e. EGB¼E5|7s. Once
the GB is decoupled from its neighbors, its energy does not change with further increasing domain size. In contrast, in the
bisector GB the BN domain displays remarkable warping with amplitude up to 1.1 Å due to interface-imposed compressive
strain (Fig. 5, right inset); the warping amplitude near the GBs is also enhanced due to synergic effect of mismatch strain
and dislocations. Since the deformation in graphene and BN domains is dominated by stretching and warping, respectively,
the energy of a bisector GB can be analytically approximated as

EGB ¼ E5j7sþ
1
2
AgrEgrε2grþ

1
2
ABNκBNρ

2
BN; ð9Þ

where Egr is the Young's modulus of graphene (normalized over thickness), κBN is the bending stiffness of BN sheet, εgr is the
tensile strain in graphene domain, ρBN is the averaged warping curvature in BN domain, and Agr and ABN are the
corresponding domain areas. Eq. (9) displays that the energy gain by forming the optimal GBs will rise even higher with
increasing domain size, without saturation effect due to the non-decaying feature of εgr and ρBN. Moreover, as both εgr and
ρBN are proportional to lattice mismatch ε, the energy gain increases quadratically with ε; and the optimal GBs in the
corresponding 2D materials will be much more beneficial.
5. Conclusions

In summary, our intensive theoretical analyses have revealed a new paradigm of grain boundaries in hybrid 2D materials
that lifts the lattice mismatch and releases the in-plane strain. In contrast to the bisector grain boundaries preferred in
homogenous 2D materials, the optimally matched grain boundaries in hybrid materials will deviate from the bisector line.
We have derived a general formula to describe the interdependence of structural parameters for the optimal grain
boundaries, showing that a larger tilt grain boundary tends to have longer periodic length but smaller deviation angle from
the bisector line; increasing the lattice mismatch shortens the periodic length yet enlarges the deviation angle. The ground
state structures of the optimal grain boundaries are proved to be a series of misaligned bisector segments that laterally shift
one-by-one by halflattice constant, which are further confirmed by first-principle calculations. Furthermore, the dislocations
in grain boundaries tend to locate at the hybrid interface as a result of strong attractive interaction in-between, and they are
likely to be composed of N-rich pentagon and B-rich heptagon in the case of 2D BNC sheets. These results not only enrich
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the knowledge of grain boundaries but also serve an essential step-stone for further exploring applications of various hybrid
2D materials.
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