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Semiempirical van der Waals method for two-dimensional materials
with incorporated dielectric functions
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A density functional theory based semiempirical van der Waals (vdW) method with dielectric functions being
incorporated is developed for two-dimensional materials. The coefficients of interatomic pairwise potentials are
derived from atomic polarizabilities obtained via a Clausius-Mossotti relation dedicated for layered crystals.
The method not only can efficiently describe the dispersion energy for a range of planar graphene-like materials
at nearly the same accuracy as the adiabatic connection fluctuation-dissipation theorem, but also rationalizes
experimentally measured relative interfacial strengths of heterostructures and interlayer registry of hexagonal

boron nitride that have plagued other vdW methods.
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I. INTRODUCTION

The van der Waals (vdW) interaction is an essential form
of intermolecular interaction that complements other strong
interactions in assembling atoms into condensed matter [1].
The vdW interaction in two-dimensional (2D) materials has
received the most attention because 2D materials not only
are held together by such a weak interaction but also allow
direct access of this interaction to all atoms constituting the
crystals [2,3]. As a result, the vdW interaction can cause
significant structural reconstruction at interfaces of 2D ma-
terials and gives rise to a series of fascinating properties via
interfacial adjustments, including interlayer superlubricity [4]
and soliton motion [5] as well as carrier localization [6] and
even superconductivity in bilayered graphene at “magic” twist
angles [7]. Moreover, the vdW interaction also plays a crucial
role in nucleation and growth of 2D materials on substrates
and subsequent transfer for applications [8,9].

The vdW interaction in 2D materials can be described via
two routes: ab initio methods based on quantum mechanical
theory and (semi)empirical methods based on a summation of
interatomic pairwise potentials. The former, such as random
phase approximation (RPA) and second-order Mgller-Plesset
perturbation theory (MP2) [10-12], is accurate but the compu-
tationally affordable systems are limited in scale. While being
highly desirable in practical 2D materials study because of
low computational cost, the latter, such as the Grimme06 and
Tkatchenko-Scheffler (TS) methods [13-17], is insufficient
for some fundamental issues regarding interlayer interactions.
First, it is difficult for the (semi)empirical methods to offer a
vdW energy ranking of homogeneous 2D materials consistent
with ab initio methods [18,19]. This deficiency can impede
the understanding of role of vdW interaction in surface
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energy-related behaviors of different 2D materials, including
wetting of water [20,21] and liquid exfoliation of 2D flake
[22,23]. Second, relative interfacial strengths at different 2D
heterostructures predicted by the (semi)empirical methods can
be in conflict with experimental measurements [24]. Third,
the experimental interlayer registry of hexagonal boron nitride
(h-BN) cannot be reproduced faithfully by the (semi)empirical
methods [16,25,26]. Last, the strain dependence of interlayer
vdW energy has not been described (semi)empirically.

Materials dielectric response is a key ingredient for the
vdW interaction. On the one hand, the dispersion energy
comes from fluctuating electromagnetic field in dielectric
media, as found by Lifshitz in his seminal work [27]. On
the other hand, the RPA theory obtains accurate correlation
energy from electronic density response functions or equiva-
lently dielectric matrices [28]. Although the (semi)empirical
methods actually rely on dielectric responses, Cg coefficients
are usually derived from the property of free atoms or dilute
bodies instead of 2D materials. Here, we propose a density
functional theory (DFT) based semiempirical vdW methods
with dielectric functions being incorporated using a Clausius-
Mossotti relation dedicated for 2D materials. The method
thus reflects the important effect of electronic structures and
bonding formation on the vdW interaction and reasonably
addresses above-mentioned issues.

II. THEORETICAL DETAILS

We start the discussion from the Clausius-Mossotti re-
lation that relates materials dielectric functions to atomic
polarizabilities. Owing to the reduced dimensionality, 2D
materials show dielectric responses distinctly different from
bulk materials [29,30] and hence a new Clausius-Mossotti
relation is required, as recently proposed by Dell’ Anna and
Merano for planar graphene-like monolayers [31]. In the in-
plane direction, the relation between the surface polarization
density P and electric field E reads P = gy x E, where x is the
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so-called surface susceptibility. From the microscopic view,
P= Z N; pi, where N, is the surface density of atom and p; =

05180E1W with ¢; and El‘OL being the atomic polarizability and
local field at sublattice i, respectively. Then, the question is
how to connect EllOC with E . By considering the dipole-dipole
coupling, the local fields at A and B sublattices were deduced

as

) _ oz, 9aCi 2 =(B)
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where a is the lattice constant. The second term in the right-
hand side of Eq. (1) stands for the local field at the A
sublattice induced by dipoles at the rest equivalent sublattices,
while the third term represents the contribution by dipoles at
all B sublattices. For planar graphene-like monolayers, the
constants C; and C, were derived to be 5.517 and 11.575,
respectively.

We extend the Clausius-Mossotti relation to 2D materials
of other crystal structures. For a buckled honeycomb lattice
(e.g., silicene [32]), C; remains the same, but C, varies with
the ratio of buckling height to lattice constant (Fig. S1 [33]).
For transition metal dichalcogenide (MX;) of the 2H phase

[3,34], the E} . vs E relation is
=(M) amCi zan | 20xCa 2x)
Eloc - E + A Eloc A a3 loc » (€)
00 _ g, xCiax oGz | 2xG zx
Eloc E+ 47_[a3 loc 47_[ Eloc + dra 3Eloc . (4)

In Eq. (4), the fourth term denotes the local field at a given
X site in the top layer induced by dipoles at all X sites in
the bottom layer. Similar to the case of buckled honeycomb
lattice, the constants C, and C; for M X, vary with the ratios of
vertical M-X and X-X spacing to lattice constant, respectively,
as shown in Supplementary Material Fig. S1 [33]. With above
Clausius-Mossotti relations, the in-plane atomic polarizability
for an elementary 2D material (e.g., graphene and silicene)
can be calculated from the in-plane dielectric function that
is obtainable from the RPA theory. However, in a binary
material, a single xy does not suffice to solve «; for two
elements. To circumvent this problem, an approximation ‘;‘—‘; ~

VCHA, /Copee BB is applied, where C42, and CEB, | are the vdW
coefficients of free A and B atoms, respectively.

The remaining task is to describe the atomic polarizability
in the out-of-plane direction, i.e., a. For monoatomic layers
(e.g., graphene, h-BN and silicene), al can be calculated
from the polarizability volume per atom, since this sort of
2D materials have no macroscopic polarization in the out-
of-plane direction [31]. The mean atomic polarizability in an
isotropic 2D material can be written as «o;(iw) = %ai”(iw) +
%ail(iw) [35]. Then, the frequency-dependent «;(iw) is used
to calculate the Cy coefficient using the Casimir-Polder inte-
gral, i.e., Ci = 2 [[* a;(iw)a;(iw)dw [36]. For 2D materials
with thickness of more than one atom (e.g., MX;), the same
treatment of o will result in polarizabilities even higher
than those of free atoms and therefore unreasonable Cg,
due to additional polarization as a result of charge transfer

between the top and bottom layers under a vertical elec-
tric field. As the Clausius-Mossotti relation for at is ab-
sent, we use the free-atom polarizability oy, to replace at.

Employing the London formula Cy; = 417,(0(0)2 with n; and
o being the atomic effective frequency and static polarizabil-
ity [37], we can assume Cg = (3,/C| + $+/Cofrec)*, Where
Cy 1s derived from the in-plane polarizability and C,, is the
free-atom coefficient from the work of Chu and Dalgarno [38].

Incorporating vdW potentials with the derived Cg coef-
ficients into DFT calculations enables a convenient evalu-
ation of interlayer interactions for 2D materials. The vdW
correction consists of a summation of interatomic pairwise
potentials damped at small distances [13,14],

1 B
Evw = =5 > faamp (RY®, RS, RE)CAB(RA®) S, (5)
A,B

where R*B is the distance between atoms A and B, C2P is the
interatomic vdW coefficient, and ROA and Rg are the effective
vdW radii. The C2B coefficient can be calculated from the
derived Cq coefficients of atoms A and B [14],
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where o and ap is the static polarizability of atoms A and
B, respectively. According to Egs. (9) and (11) in Ref. [14],
the effective vdW radius R can be calculated from the free-
atom vdW radius R ,.. and the derived Cg as

CG §
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The damping function fyamp takes a form of Fermi-type
function as used in the TS method [14], with the parameters
d and Sy for the Perdew-Burke-Ernzernhof (PBE) functional
[39] being 20 and 0.94, respectively. We use a notation vdW?2P
for the method here, whose results are compared to those with
other theories, including Grimme’s D2 [40], TS, many-body-
dispersion (MBD) [41,42], and ab initio adiabatic-connection
fluctuation-dissipation theorem (ACFDT-RPA).

The frequency dependent dielectric functions were ob-
tained using the optical routine as implemented in the VASP
code [43]. The standard projector-augmented wave method
for the core region and the PBE functional for the exchange-
correlation potential were employed. For the momentum
sampling, the k-point meshes were set to be 35x35x1 and
25x25x1 for graphene (or h-BN) and other hexagonal 2D
materials, respectively. To obtain optical spectra in the fre-
quency range from 0 to 70 eV, bands no less than six times
of default numbers were used. To study the interlayer inter-
actions in a series of 2D structures, the PBE functional plus
vdW correction strategies were applied. The DFT-TS, DFT-
MBD and DFT-vdW?P calculations were performed with the
FHI-AIMS code [44] using the standard tight numeric atom-
centered orbital basis, while those with the DFT-D2, ACFDT-
RPA were carried out with the VASP code [43] using plane
waves basis with an cutoff energy higher than 420 eV. To cal-
culate the ACFDT-RPA correlation energies, k-point meshes
of 11x11x1 and 10x10x1 were used for graphene (or A-
BN) and other hexagonal 2D materials, respectively, with
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TABLE 1. C; coefficients (in unit of hartree bohr®) and effective vdW radii (in units of bohr) of atoms in planar graphene-like monolayers
derived from dielectric functions. The free-atom values as used in the TS method [14] are presented for comparison.

GR SiC GeC BN BAs AIN GaN InN SnC
aA) 2.46 3.10 3.28 2.46 3.39 3.13 3.25 3.59 3.60
Cha. 44.6 305 354 99.5 99.5 99.5 528 496 707.0 587.4
CEB. - 44.6 44.6 24.2 246 24.2 24.2 24.2 44.6
R 3.59 4.20 4.20 3.89 3.89 433 4.19 423 4.30
RE... - 3.59 3.59 3.34 4.11 3.34 3.34 3.34 3.59
Chwan 17.63 125.82 166.65 27.41 52.29 56.71 127.59 151.01 327.53 304.60
CEBwon - 18.47 20.99 6.67 97.22 140.19 5.85 7.37 11.21 23.12
R\ awap 3.08 3.62 3.70 3.14 3.54 342 344 3.72 3.86
RE swap - 3.10 3.17 2.67 3.74 2.64 2.74 2.94 3.22

the number of bands being higher than the maximum number
of plane waves. In all calculations, a vacuum slab of 30 A was
used to avoid any spurious interaction between period images.

III. RESULTS AND DISCUSSION

Table I lists the derived Cg coefficients and effective vdW
radii of atoms in planar graphene-like monolayers [45,46].
An important trend is that Cg are distinctly reduced from the
free-atom values as adopted in the DFT-TS. For example, Cg
for graphene is 17.63 hartree bohr®, ~40% of the free-atom
value, but it approaches the value of sp? C (25.7) estimated for
an ethane molecule [40]. This contrast suggests an influence
of bonding formation on the vdW interaction. Moreover, the
reduction ratio of Cg relative to that of free atom is mate-
rial dependent, being 72% for h-BN, 60% for graphene and
43% for BAs. The difference between h-BN and graphene
is due to their different dielectric responses, evidenced by
their distinctly different optical absorption spectra [47,48].
Meanwhile, we find a reduction of effective vdW radii relative
to that of free atoms, which indicates a contraction of effective
atomic volume upon bonding formation. The reduction of Cg
can also be observed in buckled graphene-like monolayers. As
illustrated in Table SI [33], the reduction ratio is only 4% for
SnSi but can be up to 40% for GaP.

For the MoS,, MoSe,, MoTe,, WS,, WSe,, and WTe,
monolayers of the 2H phase, Cg are reduced by 30-45%

relative to the free-atom values (Table II). Interestingly, the
metallic 1T phases of the six MX, have Cy coefficients very
close to that of corresponding semiconducting 2H phases
(Table SII [33]), with the difference being less than 1.5%. This
observation implies that the short-ranged vdW interaction in
2D materials mainly relies on the type of atom and bonding
formation instead of the detailed electronic structure at the
Fermi level, unlike the long-ranged vdW interaction that
is sensitive to long-wavelength charge fluctuations [49]. Cg
derived for functionalized graphene-like materials, SnO and
black phosphorus monolayers [50,51] are presented in Tables
SII and SIV [33]. Similarly, they are reduced with respect to
the free-atom values. For instance, Cs in black phosphorus is
91% of the free-atom value, which is a good sign in light of
that the DFT-TS overestimates the interlayer energy in black
phosphorus [52].

Figure 1(a) shows the interlayer vdW energy Eyqw per
area in bilayers of graphene-like materials with an interlayer
spacing of d = 7.9 A. Calculations with the ACFDT-RPA
establish that #2-BN and AIN have the smallest E,4w, while
BAs, BP, and SnC have the largest. Eyqw for graphene (GR)
ranges in the median. This variation trend cannot be under-
stood from the free-atom’s view, since Cg of free B and Al
are much higher than that of free C. As such, the DFT-TS
results in the smallest E.qw for graphene in Fig. 1(a), even
though it has considered the effect of charge redistribution
upon bonding formation. The DFT-D2 and more sophisticated

TABLE II. Cg coefficients (in unit of hartree bohr®) and effective vdW radii (in unit of bohr) of atoms in transition metal dichalcogenide
monolayers of 2H phase derived from dielectric functions. The free-atom values as used in the TS method [14] are presented for comparison.

MoS, MoSe, MoTe, WS, WSe, WTe,
aA) 3.18 3.32 3.55 3.19 3.32 3.55
ChA. 1028.73 1028.73 1028.73 847.93 847.93 847.93
CEB. 134 210 396 134 210 396
Riie. 4.10 4.10 4.10 4.08 4.08 4.08
RE... 3.86 4.04 4.22 3.86 4.04 4.22
CAwan 560.21 604.60 665.97 504.90 545.11 593.81
CEBwon 72.97 123.42 256.36 79.79 135.00 277.32
R{\awap 3.70 3.75 3.81 3.74 3.79 3.84
RE swop 3.49 3.70 3.92 3.54 3.75 3.98
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FIG. 1. (a) Interlayer vdW energies per area, E,qw, in planar graphene-like bilayers of group-IV and group III-V elements at an interlayer

spacing of 7.9 A, calculated with the ACFDT-RPA, DFT-TS, DFT-MBD, DFT-D2 and DFT-vdW?P methods. The abscissa labels for 2D
materials are sequenced according to vdW energies calculated by the ACFDT-RPA, Egpa. (b) Evaw/Erpa in the planar graphene-like bilayers
as a function of materials lattice constant. (c) E\qw/Egrpa in representative transition metal dichalcogenide bilayers at an interlayer spacing of

7.9 A (distance between the two closest atomic planes in separate layers).

DFT-MBD methods cannot reproduce the variation trend from
the ACFDT-RPA either, since they have not fully considered
the effect of materials dielectric responses.

The DFT-vdW?2P provides a correct ranking of Eyqw among
the materials. In particular, it exclusively results in a correct
variation trend of Eyqw from 2-BN, AIN, GaN to InN and pre-
dicts the largest E,qw for BAs, BP, and SnC, both consistent
with those by the ACFDT-RPA. Furthermore, the DFT-vdW?P
raises Eqw of graphene in this rank, to a position that is
higher than those of the #-BN, AIN, and GaN, in contrast
to the other methods from which Eqw of graphene is the
smallest. Figure 1(b) shows the ratio of E,qw/Egrpa as a func-
tion of materials lattice constant. With the DFT-D2, DFT-TS,
and DFT-MBD methods, the calculated vdW energies show
considerable deviations from those by the ACFDT-RPA, with
E,qw/Erpa varying in the range of 0.81-1.73, 1.36-3.04, and
0.77-1.82, respectively. The unsatisfying performance of the
(semi)empirical corrections is remedied by the DFT-vdW?P.
For the planar graphene-like materials other than graphene,
the calculated Eyqw/ERrpa are concentrated into a narrow range
of 0.89-1.12, whereas the deviation for graphene is slightly
larger with Eyqw/Erpa of 0.71.

A suitable interlayer spacing is crucial to a fair comparison
of vdW energy. As the damping function does not affect the
interlayer energy at d = 7.9 A, the aforementioned ranking of
E,qw reflects the intrinsic vdW properties of 2D materials. On
the other hand, one should not choose too large of a spacing
(e.g., d > 10 /0\), with which the vdW interactions between
periodic images can induce non-negligible errors. In order to
see the effect of damping, we also calculate Eyqw/Egrpa for
bilayers with a near-equilibrium spacing of 3.4 A [Fig. 1(b)].
The ratios show an overall downward shift relative to those
at 7.9 A, being distributed in the range of 0.49-0.77. The

increased differences between the DFT-vdW?P and ACFDT-
RPA energies at 3.4 A are mainly due to the applied damping
function. For instance, fyamp for atomic pairs at a distance of
3.4 A are calculated to be 0.90, 0.59, and 0.63 for graphene
(C-C), SiC (Si-C), and InN (In-N), respectively. Another
possible reason is the interlayer coupling at the short distance,
which can influence the electronic bandgaps and dielectric
functions of 2D materials. Nevertheless, the good agreement
of the energetic ranking by the DFT-vdW?P with that by the
ACFDT-RPA is preserved at 3.4 A.

To investigate the performance of the DFT-vdW?P for 2D
materials with thickness of more than one atom, we show
E qw/Erpa for the MoS,, MoSe,, MoTe,, WS,, WSe,, and
WTe, bilayers with an interlayer spacing of 7.9 A in Fig. 1(c).
Interestingly, Eyaw/Erpa of the M X, bilayers are concentrated
in a narrow range of 1.20-1.24. The slight overestimation of
interlayer vdW energy by the DFT-vdW?P is easy to under-
stand, since the Cg coefficient in these materials takes a mean
value of Gy derived from the in-plane dielectric function and
the free-atom coefficient.

We then test the DFT-vdW?P in evaluating the interlayer
registry of graphene-like materials. As examples, Table III
lists the relative binding energies per atom, E}, of the graphene
and A-BN bilayers in different stacking modes. The DFT-
vdW?P identifies a correct ground state for graphene, i.e., the
AB stacking mode, in line with other methods. A greater ad-
vantage occurs for 4-BN, of which the DFT-vdW?P locate the
AA’" mode near the ground line. Ey, calculated with the DFT-
vdW?P in the AA’ mode is higher than that in the AB mode by
only 0.2 meV per atom. In contrast, the energy differences be-
tween the two modes reach 1.06 and 1.12 meV per atom with
the DFT-TS and DFT-D2, respectively, in conflict with the
experiment that identifies the AA’ mode as the ground state of

TABLE III. Relative binding energies (in unit of meV per atom) in A-BN and graphene bilayers in different stacking modes, to values of
the lowest-energy modes. The interlayer distances are optimized with fixed in-plane lattice constants.

BN(ABI) BN(AfB) BN(AAf) BN(AA> BN(AB) GR(AA) GR(AB)
Eqg 0.00 5.07 1.06 6.36 0.11 5.95 0.00
Ep, 2.18 10.23 1.12 11.34 0.00 6.23 0.00
Evawop 1.06 4.63 0.20 5.21 0.00 3.85 0.00
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FIG. 2. (a) Binding energies per area in the GR/GR, BN/GR, and MoS,/GR interfaces as a function of interlayer spacing, calculated with
the DFT-vdW?P. (b) Ratios of critical adhesion pressure at the BN/GR interface to those at the GR/GR and MoS,/GR interfaces. The geometries
for the BN/GR and GR/GR interfaces are optimized with unit cell, while that for the MoS,/GR interface is simulated with a heterostructure
consisting of 3x3 MoS, and 4 x4 graphene with misfit strains less than 1.6%. The results by other methods and from experiments [24] are

shown for comparison.

h-BN [26]. It should be noted that while the MP2 results in a
ground state AA’” mode [53] with an energy lower than the AB
mode by 0.12 meV per atom, the difference between the rela-
tive energies by the DFT-vdW?P and MP2 is irrelevant at ther-
mally elevated temperatures. These results suggest a need to
revisit the landscape of the interlayer sliding potential for vdW
crystals, potentially bringing in a remarkable influence on the
interlayer superlubricity [4,54] and even fine-tuning the elec-
tronic structures [55].

The DFT-vdW?P can also effectively describe the relative
interfacial interactions in vdW heterostructures of 2D mate-
rials, which determines whether the contact-splitting transfer
of 2D flakes from one surface to another is allowable [24].
A recent experiment has measured that the adhesion strength
at the BN/GR interface is ~0.93 times that at the MoS,/GR
interface and ~0.95 times that at the GR/GR interface [24].
These results, however, cannot be explained by the frequently
used methods, such as the DFT-D2, DFT-TS, DFT-MBD,
vdW-DF, and opt88 functionals [56,57], which tend to predict
larger interlayer binding energy and critical adhesion pressure
at the BN/GR interface than those at another two interfaces
[24]. This conflict between theory and experiment is well rec-
onciled by the DFT-vdW?2P, with which the calculated binding
energy at the BN/GR interface appears lower than those at
the MoS,/GR and GR/GR interfaces [Fig. 2(a)]. Furthermore,
the ratio of adhesion pressures calculated from the E,-d
curves is 0.998 between BN/GR and GR/GR interfaces and
1.015 between BN/GR and MoS,/GR interfaces [Fig. 2(b)].
Although the ratios still differ from the experimental values,
they are significantly improved in comparison with those by
the DFT-D2 and DFT-TS.

Another merit of the DFT-vdW?P is to describe the strain
dependence of interlayer vdW interaction. The Cy coefficients
for graphene and #-BN are found to linearly change as the
applied biaxial strain changes from —4% to 4%. Specifically,
a biaxial tensile strain of 4% increases Cq of graphene and
h-BN by 15.9% and 16.0% relative to those with —4% strain
(Fig. 3). Accordingly, Eyqw per unit cell in the graphene and
h-BN bilayers at a fixed distance of 3.4 A is enhanced by
13.4% and 14.0%, respectively. To validate the revealed phe-
nomenon, we provide the results by the ab initio ACFDT-RPA

in Fig. 3(b). Qualitatively, the ACFDT-RPA predicts stronger
interlayer vdW interactions under biaxial tensile strains, in
good agreement with the DFT-vdW?P. Quantitatively, the
difference between the interlayer vdW energies of #-BN with
4% and —4% strains is 11.1 meV per cell by the ACFDT-
RPA, very close to that by the DFT-vdW?P (10.4 meV). For
graphene, the interlayer vdW energy difference between the
tensile and compressive cases by the ACFDT-RPA (19.1 meV)
is higher than that by the DFT-vdW?2P (11.7 meV). It is worth
mentioning that this strain dependence cannot be properly
described by several widely used (semi)empirical methods.
The DFT-D2, DFT-TS, and DFT-MBD predict an opposite
and qualitatively incorrect trend, namely, the interlayer vdW
interactions in the graphene and 4-BN bilayers were weaken
by biaxial tensile strains.

The variation of E,qw is rooted in the change of dielectric
response against strain. Taking #-BN as an example, the low-
energy characteristic peaks of normalized imaginary dielectric
function undergo a redshift and become more pronounced
under applied tensile strains (Fig. S2 [33]), which result in
a monotonic enhancement of dielectric functions in the whole
imaginary frequency range [Fig. 3(c)]. It is surprising that Cg
of silicene exhibits a peculiar response to strain: it first de-
creases to a minimum and then increases as the strain changes
from compression to tension [Fig. 3(a)]. This nonmonotonic
change of Cg can be understood from the interplay between
the responses of in-plane and out-of-plane dielectric functions
against strain. As shown in Fig. 3(d), the in-plane dielec-
tric function of silicene increases monotonically with tensile
strain. However, the out-of-plane dielectric function decreases
with tensile strain, and the decrease is more pronounced in
the strain range —4%——1% but becomes milder under tensile
strains.

Finally, we check the performance of the DFT-vdW?2P for
bulk vdW crystals. Table IV lists the c-axis lattice constants,
interlayer binding energies, and cs3 elastic constants of rep-
resentative vdW crystals, calculated with the semiempirical
methods and ab initio ACFDT-RPA. For the c-axis lattice
constants of graphite, #-BN and six MX;, the performance
of the DFT-vdW?P is comparable to that of the DFT-TS.
Specifically, the c-axis lattice constants of graphite and 4-BN
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FIG. 3. (a) Dependence of C, coefficients of atoms (in unit of hartree bohr®) on biaxial strain in graphene (C), 2~-BN (B and N) and silicene
(Si). ACg denotes the variation of Cy coefficient from the strain-free value. (b) Interlayer vdW energies per unit cell as a function of biaxial
strain in graphene and #-BN bilayers, calculated with a fixed interlayer distance of 3.4 A using the ACFDT-RPA, DFT-vdW?°, DFT-TS,
DFT-D2, and DFT-MBD methods. AE,qw denotes the variation of E,qw from the strain-free value. (c) Normalized in-plane and out-of-plane

dielectric functions as a function of imaginary frequency of the #-BN

monolayer under biaxial strain. (d) The same as (c) but of the silicene

monolayer. For the normalization, the imaginary part of dielectric function as a function of real frequency is multiplied by the unit cell volume

and then a Kramers-Kronig transformation is performed.

optimized with the DFT-vdW?P deviate from the experimental
values by 0.7% and 0.6%, respectively. For the six MX;, the
DFT-vdW?P systematically overestimates the c-axis lattice
constants, but the deviations from experimental results are less
than 2%. The slight overestimation of c-axis lattice constant
by the DFT-vdW?P is easy to understand, as Jdamp reduces
the vdW energy at a near-equilibrium spacing. It should be
noted that the MBD/FI method, a revised MBD with fractional
ionic (FI) polarizabilities, shows an overall best performance
for the c-axis lattice constants of MoS,, MoSe,, WS,, and

WSe, [65]. However, for the specific WS;, the result by the
DFT-vdW?P is closer to the experimental value.

For the interlayer binding energies of graphite, s-BN,
and the six MX,, the DFT-TS suffers from large and non-
negligible overestimations. Although we cannot fully rem-
edy this deficiency, the binding energies calculated by the
DFT-vdW?P are more reasonable. In comparison with the
benchmark ACFDT-RPA results in Ref. [18], the DFT-vdW?P
underestimates the binding energies of graphite and #-BN by
18% and 13%, respectively. In the cases of MoS,, MoSe,,

TABLE IV. c-axis lattice constants (in unit of A), interlayer binding energies per unit cell £y, (in unit of meV) and c3; elastic constants (in
unit of GPa) of bulk vdW crystals, calculated with the DFT-vdW?P and DFT-TS. The listed results of experiments, ACFDT-RPA and MBD/FI
calculations are taken from references. E, is defined as the energy difference between bulk crystal and free-standing layers, instead of the

interlayer binding energy as defined in the Ref. [18].

h-BN Graphite MoS, MoSe, MoTe, WS, WSe, WTe,
Cexp [58-64] 6.69 6.68 12.30 12.90 13.96 12.50 12.97 14.07
Cvdw2D 6.65 6.73 12.43 13.15 14.05 12.52 13.25 14.14
cTs 6.67 6.70 12.04 12.77 13.99 12.20 13.02 14.05
CMBD/FI [65] - — 12.28 12.78 - 12.46 13.01 -
Ey, rea [18] —156 —192 —355.08 —368.02 - —347.85 —372.67 -
Ey, vaw2p —135.69 —156.76 —378.56 —415.57 —510.45 —371.42 —411.84 —507.24
Ey 1s —345.68 —334.08 —662.64 —655.05 —702.94 —597.42 —581.74 —646.17
Ey mep/mr [65] - - —358.01 —386.20 - —314.50 —368.94 -
€33_vdW2D 24.48 31.40 52.22 50.21 57.36 52.23 48.99 55.90
€33.TS 37.90 67.07 56.18 45.41 32.25 46.83 34.16 36.42
C33_RPA [19] 25 36 59 - - 56 - -
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WS,, and WSe,, the DFT-vdW?P overestimates the binding
energies by less than 13%. Since the ACFDT-RPA calcula-
tions for the MX, were performed with fixed layer geometry
[18], the reported energies should be underestimated and the
accurate values could be closer to the DFT-vdW?P results.
The MBD/FI has also been used to calculate the binding
energies of the four MX, and shown improved performance
over the original MBD with atomic polarizabilities [65]. We
note that when the MBD/FI results in smaller deviations
from the ACFDT-RPA results (<9.6%), the deviations are not
systematic, being either positive or negative for the four MX,.

Regarding to the mechanical properties, the c33 constants
of graphite and 4-BN predicted by the DFT-vdW?P are 31.40
and 24.48 GPa, respectively, being close to those given by the
ACFDT-RPA (36 and 25 GPa) [19]. For the M X, other than
MoS,, the DFT-vdW?2P results in stiffer c33 relative to that by
the DFT-TS. While the experimentally measured elastic con-
stants may have an uncertainty, c33 of graphite, 2-BN, MoS,,
and WS, by the DFT-vdW?P seems acceptable in comparison
with the experimental data summarized in Ref. [19].

IV. CONCLUSIONS

In conclusion, we have developed a DFT based semiem-
pirical vdW method for 2D materials with the dielectric

functions being incorporated via the developed Clausius-
Mossotti relation. The method vastly improves the description
of interlayer vdW interaction, compared to several widely
used semiempirical methods. It shows notable advantages in
ranking relative vdW energies of homogeneous graphene-
like bilayers, rationalizing experimentally measured relative
interfacial strengths of vdW heterostructures, reproducing
interlayer registry of hexagonal boron nitride, and predicting
a correct strain dependence of interlayer vdW energy. It also
provides reasonable lattice constants, interlayer binding ener-
gies and elastic constants for typical bulk vdW crystals. The
strategy holds a great potential for studying the fundamental
properties and applications of 2D materials associated with
ubiquitous vdW interaction.
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