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Semiempirical van der Waals method for two-dimensional materials
with incorporated dielectric functions
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A density functional theory based semiempirical van der Waals (vdW) method with dielectric functions being
incorporated is developed for two-dimensional materials. The coefficients of interatomic pairwise potentials are
derived from atomic polarizabilities obtained via a Clausius-Mossotti relation dedicated for layered crystals.
The method not only can efficiently describe the dispersion energy for a range of planar graphene-like materials
at nearly the same accuracy as the adiabatic connection fluctuation-dissipation theorem, but also rationalizes
experimentally measured relative interfacial strengths of heterostructures and interlayer registry of hexagonal
boron nitride that have plagued other vdW methods.
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I. INTRODUCTION

The van der Waals (vdW) interaction is an essential form
of intermolecular interaction that complements other strong
interactions in assembling atoms into condensed matter [1].
The vdW interaction in two-dimensional (2D) materials has
received the most attention because 2D materials not only
are held together by such a weak interaction but also allow
direct access of this interaction to all atoms constituting the
crystals [2,3]. As a result, the vdW interaction can cause
significant structural reconstruction at interfaces of 2D ma-
terials and gives rise to a series of fascinating properties via
interfacial adjustments, including interlayer superlubricity [4]
and soliton motion [5] as well as carrier localization [6] and
even superconductivity in bilayered graphene at “magic” twist
angles [7]. Moreover, the vdW interaction also plays a crucial
role in nucleation and growth of 2D materials on substrates
and subsequent transfer for applications [8,9].

The vdW interaction in 2D materials can be described via
two routes: ab initio methods based on quantum mechanical
theory and (semi)empirical methods based on a summation of
interatomic pairwise potentials. The former, such as random
phase approximation (RPA) and second-order Møller-Plesset
perturbation theory (MP2) [10–12], is accurate but the compu-
tationally affordable systems are limited in scale. While being
highly desirable in practical 2D materials study because of
low computational cost, the latter, such as the Grimme06 and
Tkatchenko-Scheffler (TS) methods [13–17], is insufficient
for some fundamental issues regarding interlayer interactions.
First, it is difficult for the (semi)empirical methods to offer a
vdW energy ranking of homogeneous 2D materials consistent
with ab initio methods [18,19]. This deficiency can impede
the understanding of role of vdW interaction in surface
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energy-related behaviors of different 2D materials, including
wetting of water [20,21] and liquid exfoliation of 2D flake
[22,23]. Second, relative interfacial strengths at different 2D
heterostructures predicted by the (semi)empirical methods can
be in conflict with experimental measurements [24]. Third,
the experimental interlayer registry of hexagonal boron nitride
(h-BN) cannot be reproduced faithfully by the (semi)empirical
methods [16,25,26]. Last, the strain dependence of interlayer
vdW energy has not been described (semi)empirically.

Materials dielectric response is a key ingredient for the
vdW interaction. On the one hand, the dispersion energy
comes from fluctuating electromagnetic field in dielectric
media, as found by Lifshitz in his seminal work [27]. On
the other hand, the RPA theory obtains accurate correlation
energy from electronic density response functions or equiva-
lently dielectric matrices [28]. Although the (semi)empirical
methods actually rely on dielectric responses, C6 coefficients
are usually derived from the property of free atoms or dilute
bodies instead of 2D materials. Here, we propose a density
functional theory (DFT) based semiempirical vdW methods
with dielectric functions being incorporated using a Clausius-
Mossotti relation dedicated for 2D materials. The method
thus reflects the important effect of electronic structures and
bonding formation on the vdW interaction and reasonably
addresses above-mentioned issues.

II. THEORETICAL DETAILS

We start the discussion from the Clausius-Mossotti re-
lation that relates materials dielectric functions to atomic
polarizabilities. Owing to the reduced dimensionality, 2D
materials show dielectric responses distinctly different from
bulk materials [29,30] and hence a new Clausius-Mossotti
relation is required, as recently proposed by Dell’Anna and
Merano for planar graphene-like monolayers [31]. In the in-
plane direction, the relation between the surface polarization
density �P and electric field �E reads �P = ε0χ �E , where χ is the
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so-called surface susceptibility. From the microscopic view,
�P = ∑

i Ni �pi, where Ni is the surface density of atom and �pi =
αiε0 �E i

loc, with αi and �E i
loc being the atomic polarizability and

local field at sublattice i, respectively. Then, the question is
how to connect �E i

loc with �E . By considering the dipole-dipole
coupling, the local fields at A and B sublattices were deduced
as

�E (A)
loc = �E + αAC1

4πa3
�E (A)

loc + αBC2

4πa3
�E (B)

loc , (1)

�E (B)
loc = �E + αBC1

4πa3
�E (B)

loc + αAC2

4πa3
�E (A)

loc , (2)

where a is the lattice constant. The second term in the right-
hand side of Eq. (1) stands for the local field at the A
sublattice induced by dipoles at the rest equivalent sublattices,
while the third term represents the contribution by dipoles at
all B sublattices. For planar graphene-like monolayers, the
constants C1 and C2 were derived to be 5.517 and 11.575,
respectively.

We extend the Clausius-Mossotti relation to 2D materials
of other crystal structures. For a buckled honeycomb lattice
(e.g., silicene [32]), C1 remains the same, but C2 varies with
the ratio of buckling height to lattice constant (Fig. S1 [33]).
For transition metal dichalcogenide (MX2) of the 2H phase
[3,34], the �E i

loc vs �E relation is

�E (M)
loc = �E + αMC1

4πa3
�E (M)

loc + 2αXC2

4πa3
�E (X)

loc , (3)

�E (X)
loc = �E + αXC1

4πa3
�E (X)

loc + αMC2

4πa3
�E (M)

loc + αXC3

4πa3
�E (X)

loc . (4)

In Eq. (4), the fourth term denotes the local field at a given
X site in the top layer induced by dipoles at all X sites in
the bottom layer. Similar to the case of buckled honeycomb
lattice, the constants C2 and C3 for MX2 vary with the ratios of
vertical M-X and X-X spacing to lattice constant, respectively,
as shown in Supplementary Material Fig. S1 [33]. With above
Clausius-Mossotti relations, the in-plane atomic polarizability
for an elementary 2D material (e.g., graphene and silicene)
can be calculated from the in-plane dielectric function that
is obtainable from the RPA theory. However, in a binary
material, a single χ does not suffice to solve αi for two
elements. To circumvent this problem, an approximation αA

αB
≈√

CAA
6free/C6free

BB is applied, where CAA
6free and CBB

6free are the vdW
coefficients of free A and B atoms, respectively.

The remaining task is to describe the atomic polarizability
in the out-of-plane direction, i.e., α⊥. For monoatomic layers
(e.g., graphene, h-BN and silicene), α⊥ can be calculated
from the polarizability volume per atom, since this sort of
2D materials have no macroscopic polarization in the out-
of-plane direction [31]. The mean atomic polarizability in an
isotropic 2D material can be written as αi(iω) = 2

3α
‖
i (iω) +

1
3α⊥

i (iω) [35]. Then, the frequency-dependent αi(iω) is used
to calculate the C6 coefficient using the Casimir-Polder inte-
gral, i.e., Cii

6 = 3
π

∫ ∞
0 αi(iω)αi(iω)dω [36]. For 2D materials

with thickness of more than one atom (e.g., MX2), the same
treatment of α⊥ will result in polarizabilities even higher
than those of free atoms and therefore unreasonable C6,
due to additional polarization as a result of charge transfer

between the top and bottom layers under a vertical elec-
tric field. As the Clausius-Mossotti relation for α⊥ is ab-
sent, we use the free-atom polarizability αfree to replace α⊥.
Employing the London formula C6ii = 3

4ηi(α0
i )2 with ηi and

α0
i being the atomic effective frequency and static polarizabil-

ity [37], we can assume C6 ≈ ( 2
3

√
C6‖ + 1

3

√
C6free )2, where

C6‖ is derived from the in-plane polarizability and C6free is the
free-atom coefficient from the work of Chu and Dalgarno [38].

Incorporating vdW potentials with the derived C6 coef-
ficients into DFT calculations enables a convenient evalu-
ation of interlayer interactions for 2D materials. The vdW
correction consists of a summation of interatomic pairwise
potentials damped at small distances [13,14],

EvdW = −1

2

∑
A,B

fdamp
(
RAB, RA

0 , RB
0

)
CAB

6 (RAB)−6, (5)

where RAB is the distance between atoms A and B, CAB
6 is the

interatomic vdW coefficient, and RA
0 and RB

0 are the effective
vdW radii. The CAB

6 coefficient can be calculated from the
derived C6 coefficients of atoms A and B [14],

CAB
6 = 2CAA

6 CBB
6

αB
αA

CAA
6 + αA

αB
CBB

6

, (6)

where αA and αB is the static polarizability of atoms A and
B, respectively. According to Eqs. (9) and (11) in Ref. [14],
the effective vdW radius R0eff can be calculated from the free-
atom vdW radius R0free and the derived C6 as

R0eff =
(

C
6

C
6free

) 1
6

R0free. (7)

The damping function fdamp takes a form of Fermi-type
function as used in the TS method [14], with the parameters
d and SR for the Perdew-Burke-Ernzernhof (PBE) functional
[39] being 20 and 0.94, respectively. We use a notation vdW2D

for the method here, whose results are compared to those with
other theories, including Grimme’s D2 [40], TS, many-body-
dispersion (MBD) [41,42], and ab initio adiabatic-connection
fluctuation-dissipation theorem (ACFDT-RPA).

The frequency dependent dielectric functions were ob-
tained using the optical routine as implemented in the VASP

code [43]. The standard projector-augmented wave method
for the core region and the PBE functional for the exchange-
correlation potential were employed. For the momentum
sampling, the k-point meshes were set to be 35×35×1 and
25×25×1 for graphene (or h-BN) and other hexagonal 2D
materials, respectively. To obtain optical spectra in the fre-
quency range from 0 to 70 eV, bands no less than six times
of default numbers were used. To study the interlayer inter-
actions in a series of 2D structures, the PBE functional plus
vdW correction strategies were applied. The DFT-TS, DFT-
MBD and DFT-vdW2D calculations were performed with the
FHI-AIMS code [44] using the standard tight numeric atom-
centered orbital basis, while those with the DFT-D2, ACFDT-
RPA were carried out with the VASP code [43] using plane
waves basis with an cutoff energy higher than 420 eV. To cal-
culate the ACFDT-RPA correlation energies, k-point meshes
of 11×11×1 and 10×10×1 were used for graphene (or h-
BN) and other hexagonal 2D materials, respectively, with
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TABLE I. C6 coefficients (in unit of hartree bohr6) and effective vdW radii (in units of bohr) of atoms in planar graphene-like monolayers
derived from dielectric functions. The free-atom values as used in the TS method [14] are presented for comparison.

GR SiC GeC BN BP BAs AlN GaN InN SnC

a (Å) 2.46 3.10 3.28 2.46 3.21 3.39 3.13 3.25 3.59 3.60

CAA
6free 44.6 305 354 99.5 99.5 99.5 528 496 707.0 587.4

CBB
6free – 44.6 44.6 24.2 185 246 24.2 24.2 24.2 44.6

RA
0free 3.59 4.20 4.20 3.89 3.89 3.89 4.33 4.19 4.23 4.30

RB
0free – 3.59 3.59 3.34 4.01 4.11 3.34 3.34 3.34 3.59

CAA
6vdW2D 17.63 125.82 166.65 27.41 52.29 56.71 127.59 151.01 327.53 304.60

CBB
6vdW2D – 18.47 20.99 6.67 97.22 140.19 5.85 7.37 11.21 23.12

RA
0vdW2D 3.08 3.62 3.70 3.14 3.49 3.54 3.42 3.44 3.72 3.86

RB
0vdW2D – 3.10 3.17 2.67 3.60 3.74 2.64 2.74 2.94 3.22

the number of bands being higher than the maximum number
of plane waves. In all calculations, a vacuum slab of 30 Å was
used to avoid any spurious interaction between period images.

III. RESULTS AND DISCUSSION

Table I lists the derived C6 coefficients and effective vdW
radii of atoms in planar graphene-like monolayers [45,46].
An important trend is that C6 are distinctly reduced from the
free-atom values as adopted in the DFT-TS. For example, C6

for graphene is 17.63 hartree bohr6, ∼40% of the free-atom
value, but it approaches the value of sp2 C (25.7) estimated for
an ethane molecule [40]. This contrast suggests an influence
of bonding formation on the vdW interaction. Moreover, the
reduction ratio of C6 relative to that of free atom is mate-
rial dependent, being 72% for h-BN, 60% for graphene and
43% for BAs. The difference between h-BN and graphene
is due to their different dielectric responses, evidenced by
their distinctly different optical absorption spectra [47,48].
Meanwhile, we find a reduction of effective vdW radii relative
to that of free atoms, which indicates a contraction of effective
atomic volume upon bonding formation. The reduction of C6

can also be observed in buckled graphene-like monolayers. As
illustrated in Table SI [33], the reduction ratio is only 4% for
SnSi but can be up to 40% for GaP.

For the MoS2, MoSe2, MoTe2, WS2, WSe2, and WTe2

monolayers of the 2H phase, C6 are reduced by 30–45%

relative to the free-atom values (Table II). Interestingly, the
metallic 1T phases of the six MX2 have C6 coefficients very
close to that of corresponding semiconducting 2H phases
(Table SII [33]), with the difference being less than 1.5%. This
observation implies that the short-ranged vdW interaction in
2D materials mainly relies on the type of atom and bonding
formation instead of the detailed electronic structure at the
Fermi level, unlike the long-ranged vdW interaction that
is sensitive to long-wavelength charge fluctuations [49]. C6

derived for functionalized graphene-like materials, SnO and
black phosphorus monolayers [50,51] are presented in Tables
SIII and SIV [33]. Similarly, they are reduced with respect to
the free-atom values. For instance, C6 in black phosphorus is
91% of the free-atom value, which is a good sign in light of
that the DFT-TS overestimates the interlayer energy in black
phosphorus [52].

Figure 1(a) shows the interlayer vdW energy EvdW per
area in bilayers of graphene-like materials with an interlayer
spacing of d = 7.9 Å. Calculations with the ACFDT-RPA
establish that h-BN and AlN have the smallest EvdW, while
BAs, BP, and SnC have the largest. EvdW for graphene (GR)
ranges in the median. This variation trend cannot be under-
stood from the free-atom’s view, since C6 of free B and Al
are much higher than that of free C. As such, the DFT-TS
results in the smallest EvdW for graphene in Fig. 1(a), even
though it has considered the effect of charge redistribution
upon bonding formation. The DFT-D2 and more sophisticated

TABLE II. C6 coefficients (in unit of hartree bohr6) and effective vdW radii (in unit of bohr) of atoms in transition metal dichalcogenide
monolayers of 2H phase derived from dielectric functions. The free-atom values as used in the TS method [14] are presented for comparison.

MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

a (Å) 3.18 3.32 3.55 3.19 3.32 3.55

CAA
6free 1028.73 1028.73 1028.73 847.93 847.93 847.93

CBB
6free 134 210 396 134 210 396

RA
0free 4.10 4.10 4.10 4.08 4.08 4.08

RB
0free 3.86 4.04 4.22 3.86 4.04 4.22

CAA
6vdW2D 560.21 604.60 665.97 504.90 545.11 593.81

CBB
6vdW2D 72.97 123.42 256.36 79.79 135.00 277.32

RA
0vdW2D 3.70 3.75 3.81 3.74 3.79 3.84

RB
0vdW2D 3.49 3.70 3.92 3.54 3.75 3.98
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FIG. 1. (a) Interlayer vdW energies per area, EvdW, in planar graphene-like bilayers of group-IV and group III-V elements at an interlayer
spacing of 7.9 Å, calculated with the ACFDT-RPA, DFT-TS, DFT-MBD, DFT-D2 and DFT-vdW2D methods. The abscissa labels for 2D
materials are sequenced according to vdW energies calculated by the ACFDT-RPA, ERPA. (b) EvdW/ERPA in the planar graphene-like bilayers
as a function of materials lattice constant. (c) EvdW/ERPA in representative transition metal dichalcogenide bilayers at an interlayer spacing of
7.9 Å (distance between the two closest atomic planes in separate layers).

DFT-MBD methods cannot reproduce the variation trend from
the ACFDT-RPA either, since they have not fully considered
the effect of materials dielectric responses.

The DFT-vdW2D provides a correct ranking of EvdW among
the materials. In particular, it exclusively results in a correct
variation trend of EvdW from h-BN, AlN, GaN to InN and pre-
dicts the largest EvdW for BAs, BP, and SnC, both consistent
with those by the ACFDT-RPA. Furthermore, the DFT-vdW2D

raises EvdW of graphene in this rank, to a position that is
higher than those of the h-BN, AlN, and GaN, in contrast
to the other methods from which EvdW of graphene is the
smallest. Figure 1(b) shows the ratio of EvdW/ERPA as a func-
tion of materials lattice constant. With the DFT-D2, DFT-TS,
and DFT-MBD methods, the calculated vdW energies show
considerable deviations from those by the ACFDT-RPA, with
EvdW/ERPA varying in the range of 0.81–1.73, 1.36–3.04, and
0.77–1.82, respectively. The unsatisfying performance of the
(semi)empirical corrections is remedied by the DFT-vdW2D.
For the planar graphene-like materials other than graphene,
the calculated EvdW/ERPA are concentrated into a narrow range
of 0.89–1.12, whereas the deviation for graphene is slightly
larger with EvdW/ERPA of 0.71.

A suitable interlayer spacing is crucial to a fair comparison
of vdW energy. As the damping function does not affect the
interlayer energy at d = 7.9 Å, the aforementioned ranking of
EvdW reflects the intrinsic vdW properties of 2D materials. On
the other hand, one should not choose too large of a spacing
(e.g., d > 10 Å), with which the vdW interactions between
periodic images can induce non-negligible errors. In order to
see the effect of damping, we also calculate EvdW/ERPA for
bilayers with a near-equilibrium spacing of 3.4 Å [Fig. 1(b)].
The ratios show an overall downward shift relative to those
at 7.9 Å, being distributed in the range of 0.49–0.77. The

increased differences between the DFT-vdW2D and ACFDT-
RPA energies at 3.4 Å are mainly due to the applied damping
function. For instance, fdamp for atomic pairs at a distance of
3.4 Å are calculated to be 0.90, 0.59, and 0.63 for graphene
(C-C), SiC (Si-C), and InN (In-N), respectively. Another
possible reason is the interlayer coupling at the short distance,
which can influence the electronic bandgaps and dielectric
functions of 2D materials. Nevertheless, the good agreement
of the energetic ranking by the DFT-vdW2D with that by the
ACFDT-RPA is preserved at 3.4 Å.

To investigate the performance of the DFT-vdW2D for 2D
materials with thickness of more than one atom, we show
EvdW/ERPA for the MoS2, MoSe2, MoTe2, WS2, WSe2, and
WTe2 bilayers with an interlayer spacing of 7.9 Å in Fig. 1(c).
Interestingly, EvdW/ERPA of the MX2 bilayers are concentrated
in a narrow range of 1.20–1.24. The slight overestimation of
interlayer vdW energy by the DFT-vdW2D is easy to under-
stand, since the C6 coefficient in these materials takes a mean
value of C6‖ derived from the in-plane dielectric function and
the free-atom coefficient.

We then test the DFT-vdW2D in evaluating the interlayer
registry of graphene-like materials. As examples, Table III
lists the relative binding energies per atom, Eb, of the graphene
and h-BN bilayers in different stacking modes. The DFT-
vdW2D identifies a correct ground state for graphene, i.e., the
AB stacking mode, in line with other methods. A greater ad-
vantage occurs for h-BN, of which the DFT-vdW2D locate the
AA′ mode near the ground line. Eb calculated with the DFT-
vdW2D in the AA′ mode is higher than that in the AB mode by
only 0.2 meV per atom. In contrast, the energy differences be-
tween the two modes reach 1.06 and 1.12 meV per atom with
the DFT-TS and DFT-D2, respectively, in conflict with the
experiment that identifies the AA′ mode as the ground state of

TABLE III. Relative binding energies (in unit of meV per atom) in h-BN and graphene bilayers in different stacking modes, to values of
the lowest-energy modes. The interlayer distances are optimized with fixed in-plane lattice constants.

BN(AB′ ) BN(A′B) BN(AA′ ) BN(AA) BN(AB) GR(AA) GR(AB)

ETS 0.00 5.07 1.06 6.36 0.11 5.95 0.00
ED2 2.18 10.23 1.12 11.34 0.00 6.23 0.00
EvdW2D 1.06 4.63 0.20 5.21 0.00 3.85 0.00
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FIG. 2. (a) Binding energies per area in the GR/GR, BN/GR, and MoS2/GR interfaces as a function of interlayer spacing, calculated with
the DFT-vdW2D. (b) Ratios of critical adhesion pressure at the BN/GR interface to those at the GR/GR and MoS2/GR interfaces. The geometries
for the BN/GR and GR/GR interfaces are optimized with unit cell, while that for the MoS2/GR interface is simulated with a heterostructure
consisting of 3×3 MoS2 and 4×4 graphene with misfit strains less than 1.6%. The results by other methods and from experiments [24] are
shown for comparison.

h-BN [26]. It should be noted that while the MP2 results in a
ground state AA′ mode [53] with an energy lower than the AB
mode by 0.12 meV per atom, the difference between the rela-
tive energies by the DFT-vdW2D and MP2 is irrelevant at ther-
mally elevated temperatures. These results suggest a need to
revisit the landscape of the interlayer sliding potential for vdW
crystals, potentially bringing in a remarkable influence on the
interlayer superlubricity [4,54] and even fine-tuning the elec-
tronic structures [55].

The DFT-vdW2D can also effectively describe the relative
interfacial interactions in vdW heterostructures of 2D mate-
rials, which determines whether the contact-splitting transfer
of 2D flakes from one surface to another is allowable [24].
A recent experiment has measured that the adhesion strength
at the BN/GR interface is ∼0.93 times that at the MoS2/GR
interface and ∼0.95 times that at the GR/GR interface [24].
These results, however, cannot be explained by the frequently
used methods, such as the DFT-D2, DFT-TS, DFT-MBD,
vdW-DF, and opt88 functionals [56,57], which tend to predict
larger interlayer binding energy and critical adhesion pressure
at the BN/GR interface than those at another two interfaces
[24]. This conflict between theory and experiment is well rec-
onciled by the DFT-vdW2D, with which the calculated binding
energy at the BN/GR interface appears lower than those at
the MoS2/GR and GR/GR interfaces [Fig. 2(a)]. Furthermore,
the ratio of adhesion pressures calculated from the Eb-d
curves is 0.998 between BN/GR and GR/GR interfaces and
1.015 between BN/GR and MoS2/GR interfaces [Fig. 2(b)].
Although the ratios still differ from the experimental values,
they are significantly improved in comparison with those by
the DFT-D2 and DFT-TS.

Another merit of the DFT-vdW2D is to describe the strain
dependence of interlayer vdW interaction. The C6 coefficients
for graphene and h-BN are found to linearly change as the
applied biaxial strain changes from −4% to 4%. Specifically,
a biaxial tensile strain of 4% increases C6 of graphene and
h-BN by 15.9% and 16.0% relative to those with −4% strain
(Fig. 3). Accordingly, EvdW per unit cell in the graphene and
h-BN bilayers at a fixed distance of 3.4 Å is enhanced by
13.4% and 14.0%, respectively. To validate the revealed phe-
nomenon, we provide the results by the ab initio ACFDT-RPA

in Fig. 3(b). Qualitatively, the ACFDT-RPA predicts stronger
interlayer vdW interactions under biaxial tensile strains, in
good agreement with the DFT-vdW2D. Quantitatively, the
difference between the interlayer vdW energies of h-BN with
4% and −4% strains is 11.1 meV per cell by the ACFDT-
RPA, very close to that by the DFT-vdW2D (10.4 meV). For
graphene, the interlayer vdW energy difference between the
tensile and compressive cases by the ACFDT-RPA (19.1 meV)
is higher than that by the DFT-vdW2D (11.7 meV). It is worth
mentioning that this strain dependence cannot be properly
described by several widely used (semi)empirical methods.
The DFT-D2, DFT-TS, and DFT-MBD predict an opposite
and qualitatively incorrect trend, namely, the interlayer vdW
interactions in the graphene and h-BN bilayers were weaken
by biaxial tensile strains.

The variation of EvdW is rooted in the change of dielectric
response against strain. Taking h-BN as an example, the low-
energy characteristic peaks of normalized imaginary dielectric
function undergo a redshift and become more pronounced
under applied tensile strains (Fig. S2 [33]), which result in
a monotonic enhancement of dielectric functions in the whole
imaginary frequency range [Fig. 3(c)]. It is surprising that C6

of silicene exhibits a peculiar response to strain: it first de-
creases to a minimum and then increases as the strain changes
from compression to tension [Fig. 3(a)]. This nonmonotonic
change of C6 can be understood from the interplay between
the responses of in-plane and out-of-plane dielectric functions
against strain. As shown in Fig. 3(d), the in-plane dielec-
tric function of silicene increases monotonically with tensile
strain. However, the out-of-plane dielectric function decreases
with tensile strain, and the decrease is more pronounced in
the strain range −4%–−1% but becomes milder under tensile
strains.

Finally, we check the performance of the DFT-vdW2D for
bulk vdW crystals. Table IV lists the c-axis lattice constants,
interlayer binding energies, and c33 elastic constants of rep-
resentative vdW crystals, calculated with the semiempirical
methods and ab initio ACFDT-RPA. For the c-axis lattice
constants of graphite, h-BN and six MX2, the performance
of the DFT-vdW2D is comparable to that of the DFT-TS.
Specifically, the c-axis lattice constants of graphite and h-BN
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FIG. 3. (a) Dependence of C6 coefficients of atoms (in unit of hartree bohr6) on biaxial strain in graphene (C), h-BN (B and N) and silicene
(Si). �C6 denotes the variation of C6 coefficient from the strain-free value. (b) Interlayer vdW energies per unit cell as a function of biaxial
strain in graphene and h-BN bilayers, calculated with a fixed interlayer distance of 3.4 Å using the ACFDT-RPA, DFT-vdW2D, DFT-TS,
DFT-D2, and DFT-MBD methods. �EvdW denotes the variation of EvdW from the strain-free value. (c) Normalized in-plane and out-of-plane
dielectric functions as a function of imaginary frequency of the h-BN monolayer under biaxial strain. (d) The same as (c) but of the silicene
monolayer. For the normalization, the imaginary part of dielectric function as a function of real frequency is multiplied by the unit cell volume
and then a Kramers-Kronig transformation is performed.

optimized with the DFT-vdW2D deviate from the experimental
values by 0.7% and 0.6%, respectively. For the six MX2, the
DFT-vdW2D systematically overestimates the c-axis lattice
constants, but the deviations from experimental results are less
than 2%. The slight overestimation of c-axis lattice constant
by the DFT-vdW2D is easy to understand, as fdamp reduces
the vdW energy at a near-equilibrium spacing. It should be
noted that the MBD/FI method, a revised MBD with fractional
ionic (FI) polarizabilities, shows an overall best performance
for the c-axis lattice constants of MoS2, MoSe2, WS2, and

WSe2 [65]. However, for the specific WS2, the result by the
DFT-vdW2D is closer to the experimental value.

For the interlayer binding energies of graphite, h-BN,
and the six MX2, the DFT-TS suffers from large and non-
negligible overestimations. Although we cannot fully rem-
edy this deficiency, the binding energies calculated by the
DFT-vdW2D are more reasonable. In comparison with the
benchmark ACFDT-RPA results in Ref. [18], the DFT-vdW2D

underestimates the binding energies of graphite and h-BN by
18% and 13%, respectively. In the cases of MoS2, MoSe2,

TABLE IV. c-axis lattice constants (in unit of Å), interlayer binding energies per unit cell Eb (in unit of meV) and c33 elastic constants (in
unit of GPa) of bulk vdW crystals, calculated with the DFT-vdW2D and DFT-TS. The listed results of experiments, ACFDT-RPA and MBD/FI
calculations are taken from references. Eb is defined as the energy difference between bulk crystal and free-standing layers, instead of the
interlayer binding energy as defined in the Ref. [18].

h-BN Graphite MoS2 MoSe2 MoTe2 WS2 WSe2 WTe2

cexp [58–64] 6.69 6.68 12.30 12.90 13.96 12.50 12.97 14.07
cvdw2D 6.65 6.73 12.43 13.15 14.05 12.52 13.25 14.14
cTS 6.67 6.70 12.04 12.77 13.99 12.20 13.02 14.05
cMBD/FI [65] – – 12.28 12.78 – 12.46 13.01 –
Eb_RPA [18] −156 −192 −355.08 −368.02 – −347.85 −372.67 –
Eb_vdW2D −135.69 −156.76 −378.56 −415.57 −510.45 −371.42 −411.84 −507.24
Eb_TS −345.68 −334.08 −662.64 −655.05 −702.94 −597.42 −581.74 −646.17
Eb_MBD/FI [65] – – −358.01 −386.20 – −314.50 −368.94 –
c33_vdW2D 24.48 31.40 52.22 50.21 57.36 52.23 48.99 55.90
c33_TS 37.90 67.07 56.18 45.41 32.25 46.83 34.16 36.42
c33_RPA [19] 25 36 59 – – 56 – –
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WS2, and WSe2, the DFT-vdW2D overestimates the binding
energies by less than 13%. Since the ACFDT-RPA calcula-
tions for the MX2 were performed with fixed layer geometry
[18], the reported energies should be underestimated and the
accurate values could be closer to the DFT-vdW2D results.
The MBD/FI has also been used to calculate the binding
energies of the four MX2 and shown improved performance
over the original MBD with atomic polarizabilities [65]. We
note that when the MBD/FI results in smaller deviations
from the ACFDT-RPA results (<9.6%), the deviations are not
systematic, being either positive or negative for the four MX2.

Regarding to the mechanical properties, the c33 constants
of graphite and h-BN predicted by the DFT-vdW2D are 31.40
and 24.48 GPa, respectively, being close to those given by the
ACFDT-RPA (36 and 25 GPa) [19]. For the MX2 other than
MoS2, the DFT-vdW2D results in stiffer c33 relative to that by
the DFT-TS. While the experimentally measured elastic con-
stants may have an uncertainty, c33 of graphite, h-BN, MoS2,
and WS2 by the DFT-vdW2D seems acceptable in comparison
with the experimental data summarized in Ref. [19].

IV. CONCLUSIONS

In conclusion, we have developed a DFT based semiem-
pirical vdW method for 2D materials with the dielectric

functions being incorporated via the developed Clausius-
Mossotti relation. The method vastly improves the description
of interlayer vdW interaction, compared to several widely
used semiempirical methods. It shows notable advantages in
ranking relative vdW energies of homogeneous graphene-
like bilayers, rationalizing experimentally measured relative
interfacial strengths of vdW heterostructures, reproducing
interlayer registry of hexagonal boron nitride, and predicting
a correct strain dependence of interlayer vdW energy. It also
provides reasonable lattice constants, interlayer binding ener-
gies and elastic constants for typical bulk vdW crystals. The
strategy holds a great potential for studying the fundamental
properties and applications of 2D materials associated with
ubiquitous vdW interaction.
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[45] H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk,
R. T. Senger, and S. Ciraci, Phys. Rev. B 80, 155453 (2009).

[46] C.-C. Liu, W. Feng, and Y. Yao, Phys. Rev. Lett. 107, 076802
(2011).

[47] B. Arnaud, S. Lebègue, P. Rabiller, and M. Alouani, Phys. Rev.
Lett. 96, 026402 (2006).

[48] L. Yang, Nano Lett. 11, 3844 (2011).
[49] J. F. Dobson, A. White, and A. Rubio, Phys. Rev. Lett. 96,

073201 (2006).
[50] S. Tsoi, P. Dev, A. L. Friedman, R. Stine, J. T. Robinson, T. L.

Reinecke, and P. E. Sheehan, ACS Nano 8, 12410 (2014).
[51] M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 3766

(2013).
[52] L. Shulenburger, A. D. Baczewski, Z. Zhu, J. Guan, and D.

Tománek, Nano Lett. 15, 8170 (2015).
[53] G. Constantinescu, A. Kuc, and T. Heine, Phys. Rev. Lett. 111,

036104 (2013).
[54] Y. Song, D. Mandelli, O. Hod, M. Urbakh, M. Ma, and Q.

Zheng, Nat. Mater. 17, 894 (2018).
[55] C.-J. Kim, L. Brown, M. W. Graham, R. Hovden, R. W.

Havener, P. L. McEuen, D. A. Muller, and J. Park, Nano Lett.
13, 5660 (2010).

[56] M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I.
Lundqvist, Phys. Rev. Lett. 92, 246401 (2004).

[57] J. Klimeš, D. R. Bowler, and A. Michaelides, J. Phys.: Condens.
Matter 22, 022201 (2009).

[58] A. Brager, Acta Physicochim. URSS 7, 669 (1937).
[59] V. Baskin and L. Meyer, Phys. Rev. 100, 544 (1955).
[60] R. G. Dickinson and L. Pauling, J. Am. Chem. Soc. 45, 1466

(1923).
[61] P. B. James and M. T. Lavik, Acta Cryst. 16, 1183 (1963).
[62] D. Puotinen and R. E. Newnham, Acta Cryst. 14, 691 (1961).
[63] R. W. G. Wyckoff, Crystal Structures (John Wiley and Sons,

New York, 1963).
[64] B. E. Brown, Acta Cryst. 20, 268 (1966).
[65] T. Gould, S. Lebègue, J. G. Ángyán, and T. Bučko, J. Chem.
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