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Abstract-An exact elastic-plastic solution is obtained for the residual stress and strain field in a finite 
circular sheet having a cold-worked or interference fitted hole on the basis of .& defo~tion theory 
together with a modified Ramberg-Osgood law. Many factors influencing the residual stresses are then 
analysed. Further, comparison with finite element results and experimental data for rectangular sheets 
containing cold-worked holes is made. It is shown that the solution of a finite circular sheet can be used 
to predict the residual stresses on the minimum cross-section in a rectangular sheet with a cold-worked 
hole quickly and effectively, so long as the diameter of the circular sheet is equal to the width of the sheet. 

1. INTRODUCTION 

THERE EXIST numerous problems of circular holes subjected to uniform radial pressure, interference 
fitted load and cold-worked stresses in engineering. In particular, in the aeronautics industry, the 
development of locai stress-strain methods and weight function techniques for stress intensity 
factors made the analysis of residual stresses one of the key problems in prolonging the life of 
structures by interference fit or cold-working techniques. 

Many theoretical analyses have been done for the solution of a hole loaded by radial pressure 
or enlargement [l--5], but no solution has been found for a finite sheet with a strain hardening 
property with a hole. Thus, numerical methods and experimental techniques have to be used to 
obtain the stress field in a number of practical components with finite size, such as lugs with 
interference fitted bush, fasteners, and tubes bearing high pressure or fitted by a plastic enlargement 
into headplates. The numerical analyses and experimental measurements are time consuming. 
However, a fast and effective method for calculating the stress field is required in engineering. 

Hsu and Forman [1] studied the applicability of Jz deformation theory in the problem of an 
infinite sheet having a pressured hole in the light of Budiansky’s criterion [6]. Before this, 
Manga~~an [5] carried out numerical analyses on the basis of J2 defo~ation and incremental 
theories. He found that the Jz deformation theory is completely satisfied in the case of normally 
loaded circular holes. Moreover, the numerical solutions of the two theories do not differ greatly 
even when the stress paths are far from being radial. 

In the present paper, Budiansky’s theory [2] is used to obtain exact solutions of a finite circular 
sheet having a hole subjected to internal pressure, interference fit load and cold-worked stresses, 
with the strain hardening behaviour and Baushinger’s effect being considered. Then, the effective- 
ness of the solution to predict the stress and strain fields of some typical practical structures, such 
as cold-worked fasteners, is analysed. 

2. ANALYSIS OF THE PROBLEM 

Let the diameter of the hole be 2a, the external diameter of the circular sheet and the width 
of the rectangular sheet be 2b (see Fig. 1). The modified Ramberg-Osgood model, 

~ 

B 

E b<CTy 

i:= 
CJ d @-’ 
E ay [I b>bY, (1) 

is assumed, and the material is considered orthotropic but remains isotropic in the plane of the 
sheet. Here, the solution for the plane stress state is presented. 
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Fig. 1. Schematic diagram of the problem. 

2.1. Basic equations 

The shearing stress and strain, rR and yle, are zero by symmetry, and the radial and tangential 
stresses rr, and CQ must satisfy the equilibrium equation, 

da, 0, - be 
dr+ r 

- =o, (2) 

and the corresponding strains a, and ee, given by 

du, u, 
E,=p E~=I‘, 

in terms of the radial displacement u, must satisfy the compatibility equation 

de, % - E, - =o. 
dr+ r 

Decomposing the total strain as 

&,=&:+E;; &g=&;+&ij, 

the elastic strains are then related to the stresses by 

E: = (a, - v’ae)/E; E$ = (a0 - v’a,)/E, 

with v’ the Poisson ratio of the elastic strains, and the plastic strains are 

R 
ar-l+RaO 1 

R so--a,. 
l+R 1 

(3) 

(4) 

(5) 

(6) 

(64 

Here R is the ratio of the transverse plastic strain in the plane of the sheet to the plastic strain 
through the thickness, and Es the secant modulus on the uniaxial stress-strain curve at the effective 
stress a, 

and from eq. (1) we get 

2R 1 
112 

af+a$--adrae , (7) 

1 l/E forO<a Cay 
- = ES (alay)“-‘/E for a > a,.. (8) 
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As v’ has no effect on the solution of stress, v’ = R/l + R is chosen, together with eqs (Q-o-(a), 
to give 

[ 

R 
%= %-m+R II ES. (9) 

2.2. Stress solution 

Firstly, we consider the internal pressure of the hole. The boundary conditions for this case 
are 

cr,(a) = -_%; o,(b) = 0, (10) 

The elastic solutions are 

P/r2 - 1 
=r= -b2Ja2_ 1 q‘l 

b2/r2 + 1 
Ce = b21a2 _ 1 %* (11) 

When the sheet is subjected to elastic-plastic deformation, the solutions in the elastic region 
(rP < r G 6) can be given as 

b2/r2 - 1 
=,= -@Z_ 1 % 

b2/r2 + 1 
(12) 

Here, qp is the pressure of the plastic domain on the boundary of the elastic domain, r = rP. 
At r = rP, equilibrium of stress and the continuity of U, requires continuity of ur and ee, and 

further, of erg according to (2) and (T according to (7); thus, substituting (12) into (7) with o = Q, 
gives 

2%+2+-- __ 
2R b4 , -‘/2 

rP ( >I* l+R r; 

Then, substituting (13) into (12) yields the stress solutions in the elastic domain: 

(13) 

(14) 

In the plastic domain (a G r 6 rp), Budiansky’s solution with a parameter c1 is introduced: 

CF, = CT cosa 

cosa +Jtl :ZR)sin. 1 . 
Combining (14) and (15) yields the equations about c1 at r = rp, ap, with c = cy: 

where 0 < ap < 7~12. 

cosa,=[(I +2R)(ty+ l]“‘, 

(15) 

(16) 
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The compatibility equation can be expressed in stresses from (4) and (9): 

CQ-~C 
l+R r 

+ d(o, + a,) = 0. 

Substituting (15) into (17) and considering (7) gives 

s.“,;de=[ 
2(1 + R)sin a 

5 (n + 1 + 2R)cos a + (n - l),/(l + 2R)sin a 
da. 

Carrying out the integration yields 

0 
-= 

a, sin aP + a, cos aP Ir 

a, sin a + a2 cos a 1 [ exp 
2a, (1 + R)(a - up) 

a: + u: 1 9 CY 

(17) 

tw 
where a, = (n - l),/(l + 2R), a2 = (n + 1 + 2R) and p = 2a,(l + R)/(af + a:). 

Let a = a, at r = a. Then from (lo), (15) and (18) we get 

sin a, 

J(1 + 2R) - ‘OS a’ 

a, sin aP + a2 cos aP fl 

a, sin a, + a2 cos arr 1 1 exp 
&(I +JW,--cl,) 

U:+U: 
1. (19) 

Combining (2) and (15), the resulting form, with the help of (18), gives a first-order differential 
equation in r and a. Integrating it with a = a, at r = a yields 

r a, sin a + a2 cos a y -_= 
J( >[ 

sin 

sin a sin a, + a, cos a, 1 [ xexp (n2-l),/U+W(ao--a) 
a a, 2(n2+ 1+2R) 1 ’ 

(20) 
where y = [n( 1 + R)]/[n’ + 1 + 2R]. 

At r = rP, a = aP and from (20) we get 

!_P__ a, sin aP + a2 cos aP y b'- l)J(l +W(a,-a,) - I[ x exp 2(n*+ 1+2R) 1 ’ a a, sin a, + a2 cos a, 
(21) 

Combining (21), (19) and (16) forms a set of transcendental equations from which a,, aP and 
rP can be solved, with aP c a, < a,,,, where a,,, is given by (22). After a,, aP and rP are determined, 
the stresses at any point in the plastic domain can be found from (20), (18) and (15), and the stresses 
in the elastic range can be obtained from (14). 

When b + CO and qa+ oc), rP+ co and the maximum of a can be obtained from (21): 

a, = tan-’ 
n+1+2R 

(1 - r&/(1+ 2R) 1 ’ 

2.3. Strain and displacement solution 

In the elastic domain, substituting (14) into (6) gives 

I[ 
I[ 

and from (3) 
u, = t-6;. 

In the plastic domain, substituting (15) into (5) and (6) yields 

sin a ] 

sin a 1 

(22) 

(23) 

(24) 

and 
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At the edge of the hole (r = a), 

u,(a) = a; (l-v)cosa+ l+v 
J(l + 2R) 

sin a ] 

469 

(25) 

where v is a function of the ratio of plastic strain to elastic strain, and v’ G v < i. 

2.4. Discussion 

2.4.1. Solution for a circular sheet with an expanded hole. When the radius of the hole is 
expanded from r to r + U,, substituting (18) into (25) and taking a = a, gives 

(1 -v)cosa,+ l+’ 
J(l + 2R) 

sin a, 1 
p 

X 
a, sin + a, cos exp 241 + JO@, - qJ 
a, sin a, + a2 cos a, 1 [ a: + a: II “. t26j 

Combining (16), (21) and (26) we solve cl,, aP and rP. 
2.4.2. Solution for the hole interference fitted with an elastic bolt. Let the elastic modulus of 

the bolt be E,,, Poisson’s ratio be v0 and its diameter be bO = a + U,. Then the general solution of 
the bolt can be expressed as 

a,=2C (27) 

1 -vg 
u,=2C-r 

Eo ’ 
(28) 

where C is an unknown constant. Considering the continuity of Q, on the contacted face between 
the hole and bolt, from (27) and (15) we get 

cos a, - J<l : 2R) sin a, 1 . 
Then, considering the compatibility condition of displacement on the contacted face, 

u,(a) - ur@o) = u,, 

we find by substituting (29), (28) and (26) into (30) that 

uE 
-%=a d 

n-l 

0 [ d GY 

boE -(l -vo)- 
1 

aEo 
cosa,- 

&I+ W 
sin a, 

> 
. 

(29) 

(30) 

(31) 

The corresponding a,, aP and rP can then be solved by combining (16), (31) and (21). 
2.4.3. Residual stresses in a circular sheet with a cold-worked hole. Residual stresses and the 

permanent residual enlargement for a circular sheet having a cold-worked hole can be solved in 
a similar way as in ref. [l]; however, the reverse yield in the material during unloading is considered 
here. 

For points not yielding during the loading phase, the reverse yield stress is determined by 

a; = a+ +ay, (32) 

and for points bearing plastic deformation as loading, 

a; = 2(1 - H)a,+ 2Ha+, (33) 

where a + stands for the maximum effective stress achieved during the loading process. H is the 
parameter for Baushinger’s effect of the material and 0 < H G 1. 

3. ANALYSIS OF THE RESULTS 

An iterative process was used on the transcendental equation set to solve a,,, GLp and r,,. The 
procedure converged very rapidly. 

EFM 46/613--H 
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Fig. 2. The effect of interference on the distribution of residual stress in LYl2CZ aluminium plate. 

Figure 2 shows the effects of difference interference on the residual stress field. It can be seen 
that the plastic range expands and the maximum tangential stresses and residual stresses increase 
as the relative interference UJa increases. What is more, the residual stresses increase quickly with 
U&r when the interference is low, but very slowly at high interference. 

It can be seen from Fig. 3 that the size ratio of the sheet, b/a, has obvious effects on the residual 
stress field, but when b/a becomes large its influence becomes weak in the range of r < rp. 

Effects of the ratio E,,/E on stress and the residual stress field are similar to that of interference 
(see Fig. 4) and become weaker as the interference becomes larger. 

The hardening parameter n exerts a strong influence on the residual stress field when n is not 
very large, and the influence diminishes as n increases, as shown in Fig. 5. 

4. DISCUSSION 

In engineering practice, interference fitted and cold-worked fasteners are widely used to 
prolong the life of structures, and a rectangle is the most typical fastener shape. Here the suitability 
of the analytical solution for a circular sheet to a rectangular fastener will be discussed. 

Figure 6 gives Crows’ finite element (FE) results [4] for a 7075T6 aluminium alloy rectangular 
sheet with an interference fitted hole, together with the present solutions for a circular sheet with 
the same b. It can be seen that a good agreement exists between them, especially for r < rp. 

A comparison of the present solution of residual stresses with the FE results for a high strength 
steel circular sheet having a cold-worked hole is shown in Fig. 7. The two solutions coincide very 
well. The corresponding FE solutions for a rectangular sheet with the same b are also presented 
in Fig. 7. Though the plastic range is very large, good agreement is still found for the residual stress 
component a,. 

0 1 2 3 4 5 6 7 
r--it (mm) 

Fig. 3. The effect of b/a on the distribution of residual stress in LY 12CZ ahnninium plate. 
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The effect of E,/E on the distribution of residual stress in LYl2CZ alumini~m 
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Fig. 5. The effect of n on the distribution of residual stress. 

a,/ a==2.34Ya 

471 

plate. 

Analysis mult 
-_- circu]ar 

Fig. 6. Interference stresses on the section of 19 = 0” in 7075 Fig. 7. The distribution of residual stress in a high strength 
altinium plate. steel. 
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Fig. 8. The distribution of residual strains in LYl2CZ aluminium plate. 

In Fig. 8, a comparison of the present results with experimental data of interference strains 
and residual strains in a rectangular sheet is presented. A good agreement is obtained once more. 
The present solution gives r,, = 6.64 mm, and the experiment [3] yields rp between 6.5 and 6.6 mm; 
the error is less than 2%. 

In conclusion, it can be said that the present solution for a circular sheet can be used to predict 
the residual stress field in a rectangular fastener with an interference fitted or cold-worked hole 
quickly and effectively, provided they have the same value of b. 
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